mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 02:53:41 +08:00
clean up
This commit is contained in:
parent
bbde6ea4bc
commit
fd63c68280
@ -76,16 +76,12 @@ class Attention(nn.Module):
|
|||||||
cache: Optional[Any] = None,
|
cache: Optional[Any] = None,
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
B, L, D = x.shape
|
B, L, D = x.shape
|
||||||
|
|
||||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||||
queries = self.q_norm(queries)
|
queries = self.q_norm(queries)
|
||||||
keys = self.k_norm(keys)
|
keys = self.k_norm(keys)
|
||||||
|
|
||||||
# Prepare the queries, keys and values for the attention computation
|
|
||||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
if cache is not None:
|
if cache is not None:
|
||||||
queries = self.rope(queries, offset=cache.offset)
|
queries = self.rope(queries, offset=cache.offset)
|
||||||
keys = self.rope(keys, offset=cache.offset)
|
keys = self.rope(keys, offset=cache.offset)
|
||||||
@ -93,11 +89,9 @@ class Attention(nn.Module):
|
|||||||
else:
|
else:
|
||||||
queries = self.rope(queries)
|
queries = self.rope(queries)
|
||||||
keys = self.rope(keys)
|
keys = self.rope(keys)
|
||||||
|
|
||||||
output = scaled_dot_product_attention(
|
output = scaled_dot_product_attention(
|
||||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||||
)
|
)
|
||||||
|
|
||||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
return self.o_proj(output)
|
return self.o_proj(output)
|
||||||
|
|
||||||
@ -123,32 +117,17 @@ class OlmoeSparseMoeBlock(nn.Module):
|
|||||||
self.experts = [MLP(args) for _ in range(self.num_experts)]
|
self.experts = [MLP(args) for _ in range(self.num_experts)]
|
||||||
|
|
||||||
def __call__(self, x: mx.array) -> mx.array:
|
def __call__(self, x: mx.array) -> mx.array:
|
||||||
batch_size, sequence_length, hidden_dim = x.shape
|
B, L, D = x.shape
|
||||||
x = x.reshape(-1, hidden_dim)
|
x = x.reshape(-1, D)
|
||||||
|
|
||||||
# router_logits: (batch * sequence_length, n_experts)
|
|
||||||
router_logits = self.gate(x)
|
router_logits = self.gate(x)
|
||||||
|
|
||||||
# Compute routing weights with softmax
|
|
||||||
routing_weights = mx.softmax(router_logits, axis=1, precise=True)
|
routing_weights = mx.softmax(router_logits, axis=1, precise=True)
|
||||||
|
|
||||||
# Initialize output tensor
|
|
||||||
final_hidden_states = mx.zeros_like(x)
|
final_hidden_states = mx.zeros_like(x)
|
||||||
|
|
||||||
# Process each token through all experts, weighted by routing weights
|
|
||||||
for expert_idx in range(self.num_experts):
|
for expert_idx in range(self.num_experts):
|
||||||
# Get the weight for this expert for all tokens
|
|
||||||
expert_weights = routing_weights[:, expert_idx:expert_idx+1]
|
expert_weights = routing_weights[:, expert_idx:expert_idx+1]
|
||||||
|
|
||||||
# Only process if any weight is significant
|
|
||||||
if mx.max(expert_weights) > 1e-5:
|
if mx.max(expert_weights) > 1e-5:
|
||||||
# Apply expert to all tokens
|
|
||||||
expert_output = self.experts[expert_idx](x)
|
expert_output = self.experts[expert_idx](x)
|
||||||
|
|
||||||
# Weight the output and add to final result
|
|
||||||
final_hidden_states += expert_output * expert_weights
|
final_hidden_states += expert_output * expert_weights
|
||||||
|
return final_hidden_states.reshape(B, L, D)
|
||||||
return final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerBlock(nn.Module):
|
class TransformerBlock(nn.Module):
|
||||||
@ -190,16 +169,12 @@ class OlmoeModel(nn.Module):
|
|||||||
mask=None,
|
mask=None,
|
||||||
):
|
):
|
||||||
h = self.embed_tokens(inputs)
|
h = self.embed_tokens(inputs)
|
||||||
|
|
||||||
if mask is None:
|
if mask is None:
|
||||||
mask = create_attention_mask(h, cache)
|
mask = create_attention_mask(h, cache)
|
||||||
|
|
||||||
if cache is None:
|
if cache is None:
|
||||||
cache = [None] * len(self.layers)
|
cache = [None] * len(self.layers)
|
||||||
|
|
||||||
for layer, c in zip(self.layers, cache):
|
for layer, c in zip(self.layers, cache):
|
||||||
h = layer(h, mask, cache=c)
|
h = layer(h, mask, cache=c)
|
||||||
|
|
||||||
return self.norm(h)
|
return self.norm(h)
|
||||||
|
|
||||||
|
|
||||||
@ -226,7 +201,6 @@ class Model(nn.Module):
|
|||||||
return out
|
return out
|
||||||
|
|
||||||
def sanitize(self, weights):
|
def sanitize(self, weights):
|
||||||
# Remove unused precomputed rotary freqs
|
|
||||||
return {
|
return {
|
||||||
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user