partial implementation of SD XL, incl. CLIP with projection, but doesn't produce good output

This commit is contained in:
Pawel Kowalski
2023-12-19 13:21:34 +01:00
parent c63870d3cb
commit fe2291710f

View File

@@ -95,3 +95,80 @@ class StableDiffusion:
x = self.autoencoder.decode(x_t / self.autoencoder.scaling_factor)
x = mx.minimum(1, mx.maximum(0, x / 2 + 0.5))
return x
class StableDiffusionXL(StableDiffusion):
def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
super().__init__(model, float16)
self.text_encoder_2 = load_text_encoder(model, float16, name="text_encoder_2")
self.tokenizer_2 = load_tokenizer(model, name="tokenizer_2")
def generate_latents(
self,
text: str,
text_2: str = None,
n_images: int = 1,
num_steps: int = 50,
cfg_weight: float = 7.5,
negative_text: str = "",
negative_text_2: str = "",
latent_size: Tuple[int] = (64, 64),
seed=None,
):
# Set the PRNG state
seed = seed or int(time.time())
mx.random.seed(seed)
# Tokenize the text
tokens = [self.tokenizer.tokenize(text)]
if cfg_weight > 1:
tokens += [self.tokenizer.tokenize(negative_text)]
lengths = [len(t) for t in tokens]
N = max(lengths)
tokens = [t + [0] * (N - len(t)) for t in tokens]
tokens = mx.array(tokens)
# Tokenize the text_2 if exists, otherwise tokenize original text with tokenizer_2
tokens2 = (
[self.tokenizer_2.tokenize(text_2)]
if text_2
else [self.tokenizer_2.tokenize(text)]
)
if cfg_weight > 1:
tokens2 += (
[self.tokenizer.tokenize(negative_text_2)]
if text_2
else [self.tokenizer.tokenize(negative_text)]
)
lengths2 = [len(t) for t in tokens2]
N = max(lengths2)
tokens2 = [t + [0] * (N - len(t)) for t in tokens2]
tokens2 = mx.array(tokens2)
# Compute the features
conditioning1 = self.text_encoder(tokens)
conditioning2 = self.text_encoder_2(tokens2)
conditioning = mx.concatenate([conditioning1, conditioning2], axis=2)
# Repeat the conditioning for each of the generated images
if n_images > 1:
conditioning = _repeat(conditioning, n_images, axis=0)
# Create the latent variables
x_T = self.sampler.sample_prior(
(n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
)
# Perform the denoising loop
x_t = x_T
for t, t_prev in self.sampler.timesteps(num_steps, dtype=self.dtype):
x_t_unet = mx.concatenate([x_t] * 2, axis=0) if cfg_weight > 1 else x_t
t_unet = mx.broadcast_to(t, [len(x_t_unet)])
eps_pred = self.unet(x_t_unet, t_unet, encoder_x=conditioning)
if cfg_weight > 1:
eps_text, eps_neg = eps_pred.split(2)
eps_pred = eps_neg + cfg_weight * (eps_text - eps_neg)
x_t_prev = self.sampler.step(eps_pred, x_t, t, t_prev)
x_t = x_t_prev
yield x_t