Commit Graph

7 Commits

Author SHA1 Message Date
Awni Hannun
7be292c0c9
Handle longer prompt/generation (#931)
* rebase

* nits

* nit

* fix rotating cache with step prefill

* update version
2024-08-16 15:28:39 -07:00
otriscon
46da74fea2
Unify attention mask in LLMs (#911)
* Unify attention mask creation in LLMs.

Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc
code to create a mask for the attention mechanism. This usually takes the form:

```
    mask = None
    if h.shape[1] > 1:
        mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
        mask = mask.astype(h.dtype)
```

This correctly creates a mask only if the input consists of more than one token.
But this code assumes the multi-token input is at the beginning of inference.
If, for example, we are evaluating multiple tokens because of speculative
decoding or prompt cache reuse, this mask will not have the correct shape and
and will cause the raising of an exception in the attention computation.

Some of the models correctly implement the mask creation with code like this:

```
    mask = None
    if h.shape[1] > 1:
        mask = create_additive_causal_mask(
            h.shape[1], cache[0].offset if cache is not None else 0
        )
        mask = mask.astype(h.dtype)
```

This commit unifies the attention mask creation for all models with a new
function `create_attention_mask`, reducing code duplication and helping all
models support inference performance enhancements like those mentioned above.

* Allow batches in LLM key-value cache

The current implementation of the LLM key-value cache assumes that
the input batch is of size 1. Input batching (evaluating multiple
alterative inputs at the same time) can be a valuable tool for
speculative sampling and other techniques.

This change removes the hard-coded batch size from the code that
resizes the key-value cache.

* Simplify causal mask creation

Use the same codepath regardless of whether there's an offset or
not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717).

* Use old-style type annotation to avoid linter error
2024-07-25 16:45:22 -07:00
Anchen
561dcf5643
Add support for deepseek coder v2 lite (#882)
* feat: add support for deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct

* fix softmax + some cleanup

* more nits

* fix rope

* fix original_max_position_embeddings in rope

* fix original_max_position_embeddings in rope config

* add group greedy

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-17 07:23:28 -07:00
Prince Canuma
b044ce2acf
Add support for ibm granite (#758)
* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* remove unused function

* rebase fix

* move position emebedding to mask creation

* add to tuner and format

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* rebase fix

* move position emebedding to mask creation

* add to tuner and format

* refactor mask

* remove dropout layers
2024-05-21 20:16:31 -07:00
Awni Hannun
69181e0058
Support non incremental kv cache growth (#766) 2024-05-15 12:56:24 -07:00
Awni Hannun
ee60e2a9d5
Kv cache (#643)
* in place kv_cache

* fix

* fix kv cache size

* partially fix kv cache dtype

* step kv cache

* multiple of step size

* more teests + kv cache

* more kv cache

* udpate all models to use kv cache
2024-05-08 08:18:13 -07:00
Awni Hannun
c6440416a2
Mlx llm package (#301)
* fix converter

* add recursive files

* remove gitignore

* remove gitignore

* add packages properly

* read me update

* remove dup readme

* relative

* fix convert

* fix community name

* fix url

* version
2024-01-12 10:25:56 -08:00