Commit Graph

22 Commits

Author SHA1 Message Date
Alex Barron
85ffd2c96a
Quantized KV Cache (#1075)
* add QuantizedKVCache

* simplify

* add tests

* single sdpa function

* fix sed

* in place

* fix tests

* support different k and v head dims
2024-10-31 16:59:52 -07:00
Awni Hannun
fca087be49
More cache improvements (#1015)
* fix rotating kv cache for chat use case

* reorg + fixes to caching, unify prompt caching across types and use cases for e.g. caching during a chat

* nit in chat

* fix tests

* fix tests

* fix tests

* docs

* chat command

* comments + docs

* Define meta_state on all Cache implementations

* fixes + trim_prompt_cache api

* fix default model

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-10-07 20:45:51 -07:00
Awni Hannun
6731254e76
Use fast rope (#945)
* use fast rope

* fix llama

* use fast rope for llama3.1

* requires unreleased mlx

* fix su

* fix deepseek v2

* only one of base or freqs

* nit

* fix

* hard code freqs
2024-08-23 13:18:51 -07:00
Awni Hannun
7be292c0c9
Handle longer prompt/generation (#931)
* rebase

* nits

* nit

* fix rotating cache with step prefill

* update version
2024-08-16 15:28:39 -07:00
otriscon
46da74fea2
Unify attention mask in LLMs (#911)
* Unify attention mask creation in LLMs.

Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc
code to create a mask for the attention mechanism. This usually takes the form:

```
    mask = None
    if h.shape[1] > 1:
        mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
        mask = mask.astype(h.dtype)
```

This correctly creates a mask only if the input consists of more than one token.
But this code assumes the multi-token input is at the beginning of inference.
If, for example, we are evaluating multiple tokens because of speculative
decoding or prompt cache reuse, this mask will not have the correct shape and
and will cause the raising of an exception in the attention computation.

Some of the models correctly implement the mask creation with code like this:

```
    mask = None
    if h.shape[1] > 1:
        mask = create_additive_causal_mask(
            h.shape[1], cache[0].offset if cache is not None else 0
        )
        mask = mask.astype(h.dtype)
```

This commit unifies the attention mask creation for all models with a new
function `create_attention_mask`, reducing code duplication and helping all
models support inference performance enhancements like those mentioned above.

* Allow batches in LLM key-value cache

The current implementation of the LLM key-value cache assumes that
the input batch is of size 1. Input batching (evaluating multiple
alterative inputs at the same time) can be a valuable tool for
speculative sampling and other techniques.

This change removes the hard-coded batch size from the code that
resizes the key-value cache.

* Simplify causal mask creation

Use the same codepath regardless of whether there's an offset or
not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717).

* Use old-style type annotation to avoid linter error
2024-07-25 16:45:22 -07:00
Alex Cheema
cd8efc7fbc
Add support for Llama-3.1 (#907)
* add dynamicNTK scaling rope

* remove unused var

* fix rope base

* llama3.1 fixes

* TODO for rope eval

* vectorise llama3 base freq calculation

* removed the arbitrary 2.0 rope_scale default case

* fix slow llama3.1 generation by evaluating stateless part of DynamicNTKScalingRoPE in init

* nits + format

* use mx.pi

* fix tests and add test for 3.1

---------

Co-authored-by: Prince Canuma <prince.gdt@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-23 13:21:32 -07:00
Prince Canuma
3f337e0f0a
Add Mistral NeMo (fix) (#895)
* fix head_dim

* Update llms/mlx_lm/models/llama.py

* fix kv error

* formatting

* Delete test.py

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-07-22 06:09:24 -07:00
Yi Wang
a54dfd698e
Correct the type annotation of cache in llama.py (#828)
* Update

* Fix isort
2024-06-10 15:18:34 -07:00
Yi Wang
bb8227f181
Correct type annotation of llama.ModelArgs.num_key_value_heads (#827) 2024-06-10 14:47:31 -07:00
Prince Canuma
b044ce2acf
Add support for ibm granite (#758)
* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* remove unused function

* rebase fix

* move position emebedding to mask creation

* add to tuner and format

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* rebase fix

* move position emebedding to mask creation

* add to tuner and format

* refactor mask

* remove dropout layers
2024-05-21 20:16:31 -07:00
Awni Hannun
fad9598372
Fix llama cache check (#763)
* fix llama cache check

* add test
2024-05-08 08:35:54 -07:00
Awni Hannun
ee60e2a9d5
Kv cache (#643)
* in place kv_cache

* fix

* fix kv cache size

* partially fix kv cache dtype

* step kv cache

* multiple of step size

* more teests + kv cache

* more kv cache

* udpate all models to use kv cache
2024-05-08 08:18:13 -07:00
Kevin Wang
c0019c4908
Pad mask with zeros for non-square attention matrices (#715)
* Pad mask with zeros for non-square attention matrices

The current implementation of the mask assumes the attention matrix is square, which is true if there is no cache. However, if one wishes to produce multiple tokens at a time, such as in speculative decoding implementations, a rectangular mask is necessary.

This change pads the bottom of the mask with zeros so multi-token decoding with a cache works correctly.

* Directly create mask instead of padding

* Update llama.py
2024-05-04 16:32:25 -07:00
Awni Hannun
b8a348c1b8
Switch to fast RMS/LN Norm (#603)
* use nn.RMSNorm, use sdpa, cleanup

* bump mlx versions

* minor update

* use fast layer norm

* version bump

* update requirement for whisper

* update requirement for gguf
2024-03-23 07:13:51 -07:00
Anchen
3535408c99
chore(mlx-lm): fix tie_word_embeddings for qwen2 (#566)
* chore: fix tie_word_embeddings for qwen2

* chore: default tie_word_embeddings to True
2024-03-12 21:34:32 -07:00
Awni Hannun
8b05bb6d18
[mlx-lm] Use sdpa in llama / mistral model (#515)
* use sdpa

* update a few more models

* version

* fix stablelm type
2024-03-07 17:41:23 -08:00
Awni Hannun
f24edfa9dc
[mlx-lm] Add precompiled normalizations (#451)
* add precompiled normalizations

* nits
2024-02-22 12:40:55 -08:00
Awni Hannun
8fd953ee2b
Support for slerp merging models (#455)
* support for slerp merging models

* docs

* update docs

* format'
2024-02-19 20:37:15 -08:00
Angelos Katharopoulos
f71e965d57
Change gqa to use repeat instead of concatenate (#443) 2024-02-14 17:40:11 -08:00
Awni Hannun
d4666615bb
Lazy import + refactor Lora layer addition (#426)
* lazy model import in mlx_lm

* change lora loading

* fix olmo lora

* remove a bunch of unused stuff from plamo

* move phixtral to mlx-lm and out of llms/
2024-02-12 10:51:02 -08:00
Awni Hannun
bcc9fc3581
two minor fixes (#335) 2024-01-18 14:18:13 -08:00
Awni Hannun
c6440416a2
Mlx llm package (#301)
* fix converter

* add recursive files

* remove gitignore

* remove gitignore

* add packages properly

* read me update

* remove dup readme

* relative

* fix convert

* fix community name

* fix url

* version
2024-01-12 10:25:56 -08:00