* Initial config handler and test
* Added means to run from CLI
* Update lora config loading and tests
* Constrain scheduler config (warmup and minimum LR) for each kind
* Update reference to moved schedule_config module
* Minor fix
* Fix typos
* Moved build_schedule and tests
* nits in schedule config
* flake
* fix path
---------
Co-authored-by: Awni Hannun <awni@apple.com>
* use nn.RMSNorm, use sdpa, cleanup
* bump mlx versions
* minor update
* use fast layer norm
* version bump
* update requirement for whisper
* update requirement for gguf
* chore(mlx-lm): clean up the top p imp
* chore: clean up
* chore: add test
* chore: address comments
* chore: clean up docs string
* chore: clean up test
* wip
* wip
* feat: convert mlx model to gguf f16
* chore: conver norm layer to float32 to avoid overflow issue
* chore: add support for mixtral
* chore: clean up
* chore: remove unused import statement
* chore: clean up weight name mapping
* version and readme
* actual version bump
---------
Co-authored-by: Awni Hannun <awni@apple.com>
* Add dropout parameter to lora configuration
A dropout parameter has been added to the lora configuration settings in lora_config.yaml. The LoRALinear class in utils.py has been updated to take this new parameter. Additionally, a AttributeError: 'types.SimpleNamespace' object has no attribute 'prompt' related to `args.prompt` has been removed from lora.py.
* Update lora_config.yaml
Set dropout to 0.0 in the sample config file
* format
---------
Co-authored-by: Awni Hannun <awni@apple.com>
* chore(mlx-lm): fix print_trainable_parameters for quant models
* chore: clean up
* refactor: use layer type to check quant bits
* chore: address comment
* Add --lora-all-linear option to apply LoRa to all linear transfer block layers
* Moved to YAML config and added specification of rank & alpha
* nits in conifg, more tests
* nit
* run tests for prs
---------
Co-authored-by: Awni Hannun <awni@apple.com>
* Convert mlx_lm.lora to use YAML configuration
* pre-commit run fixes
* Fix loading of config file
* Remove invalid YAML from doc
* Update command-line options and YAML parameter overriding, per feedback in #503
* Minor wording change
* Positional argument
* Moved config to a (-c/--config) flag
* Removed CLI option defaults (since CLI options take precedence and their defaults are in CONFIG_DEFAULTS)
* pre-commit format updates
* Fix handling of CLI option defaults
* Prevent None values of unspecified CLI options from overwriting values from CONFIG_DEFAULTS
* nits
---------
Co-authored-by: Awni Hannun <awni@apple.com>
* Use named tuple from typing for typehints
* Add type hints
* Simplify expression
* Type hint fix
* Improved do_POST logic
Use a map of endpoints to methods to reduce redundancy in code
* Fix format
* Improve redundancy
Call method dynamically instead of writing out all arguments twice
* Send response instead of returning
* Fix typo
* Revert change
* Make adapter_file as Optional
* Mark formatter as optional
* format
* Create message generator
Store response data that stays static for the duration of the response inside of the object:
system_fingerprint
request_id
object_type
requested_model
Created a message generator, that dynamically creates messages from the metadata stored inside of the object, and the data from the model pipeline
* Remove leftover
* Update parameters to reflect new object structure
No longer pass all arguments between functions, but use the stores values inside of the object
* Parse body before calling request specific methods
* Call super init
* Update server.py
* Fixed outdated documentation parameter name
* Add documentation
* Fix sending headers twice
During testing I found that when using the streaming option, headers have always been sent twice. This should fix that
* Simplify streaming code by using guard clauses
Don't wrap wfile writes in try blocks, the server class has its own try block to prevent crashing
* Bug fix
* Use Content-Length header
Let the completion type specific methods finish sending the headers. This allows us to send the Content-Length header as the model returns a completion.
* Update utils.py
* Add top_p documentation
* Type hint model and tokenizer as required
* Use static system fingerprint
System fingerprint now stays the same across requests
* Make type hint more specific
* Bug Fix
Supplying less than 2 models to merge would raise ValueError and calls len on unbound "models". Should be "model_paths" instead.
Mark upload_repo as optional
* Move more of the shared code into do_POST
Processing stop_id_sequences is done no matter the request endpoint or type, move it into the shared section. handle_ methods now just return the prompt in mx.array form.
* Store stop_id_sequences as lists instead of np
During testing I found that letting the tokenizer return values as python lists and converting them to mlx arrays was around 20% faster than having the tokenizer convert them to np, and from np to mlx. This allows makes it so numpy no longer needs to be imported.
* Update stop_id_sequences docs
* Turn if check to non-inclusive
Only continue if buffer is smaller
* Documentation fix
* Cleared method names
Instead of handle_stream and generate_competion, we should name it handle_completion.
Instead of handle_completions and handle_chat_completions, we should name it handle_text_completions, since both are completions, calling it text completions should make it more descriptive
* Make comment clearer
* fix format
* format
* Add Starcoder2 model and update utils.py
* Refactor model arguments and modules in starcoder2.py
* Refactor FeedForward class to MLP in starcoder2.py
* Fix typo
* pre-commit
* Refactor starcoder2.py: Update model arguments and modules
* Fix LM head and MLP layers
* Rename input layer norm
* Update bias in linear layers
* Refactor token embeddings in Starcoder2Model
* Rename to standard HF attention layer name
* Add LayerNorm
* Add transposed token embeddings (like in Gemma)
* Refactor MLP and TransformerBlock classes
* Add tie_word_embeddings option to ModelArgs and update Model implementation
* Add conditional check for tying word embeddings in Starcoder2Model
* Fix bias in lm_head linear layer
* Remove unused LayerNorm in stablelm
* Update transformers dependency to use GitHub repository
* fix lm head bug, revert transformer req
* Update RoPE initialization in Attention class
---------
Co-authored-by: Awni Hannun <awni@apple.com>
* StableLM now part of Transformers as stablelm rather than stablelm_epoch; changed config to match new changes
* removing old file
* reference new stablelm
* Add metadata when saving safetensors
Add metadata format="pt" for safetensors so that model's are accessible to `transformers` users as well.
* save with metadata format mlx
Save the model weights with metadata format of "mlx".
* Updated llms/mlx_lm/generate.py
* Don't serve local directory
BaseHTTPRequestHandler serves the current directory by default. Definitely not intended behaviour. Remove the "do_HEAD" and "do_GET" methods.
* Fix typo in method name
I assume hanlde_stream was intended to be called handle_stream
* Fix outdated typehint
load_model returns nn.Module, however fetch_from_hub was not updated to reflect the change
* Add some more type hints
* Add warnings for using in prod
Add a warning to README and runtime, discouraging use in production. The warning is the same as on the python docs for HTTPServer https://docs.python.org/3/library/http.server.html
* format
* nits
---------
Co-authored-by: Awni Hannun <awni@apple.com>