Commit Graph

7 Commits

Author SHA1 Message Date
otriscon
46da74fea2
Unify attention mask in LLMs (#911)
* Unify attention mask creation in LLMs.

Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc
code to create a mask for the attention mechanism. This usually takes the form:

```
    mask = None
    if h.shape[1] > 1:
        mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
        mask = mask.astype(h.dtype)
```

This correctly creates a mask only if the input consists of more than one token.
But this code assumes the multi-token input is at the beginning of inference.
If, for example, we are evaluating multiple tokens because of speculative
decoding or prompt cache reuse, this mask will not have the correct shape and
and will cause the raising of an exception in the attention computation.

Some of the models correctly implement the mask creation with code like this:

```
    mask = None
    if h.shape[1] > 1:
        mask = create_additive_causal_mask(
            h.shape[1], cache[0].offset if cache is not None else 0
        )
        mask = mask.astype(h.dtype)
```

This commit unifies the attention mask creation for all models with a new
function `create_attention_mask`, reducing code duplication and helping all
models support inference performance enhancements like those mentioned above.

* Allow batches in LLM key-value cache

The current implementation of the LLM key-value cache assumes that
the input batch is of size 1. Input batching (evaluating multiple
alterative inputs at the same time) can be a valuable tool for
speculative sampling and other techniques.

This change removes the hard-coded batch size from the code that
resizes the key-value cache.

* Simplify causal mask creation

Use the same codepath regardless of whether there's an offset or
not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717).

* Use old-style type annotation to avoid linter error
2024-07-25 16:45:22 -07:00
JosefAlbers
bfc1f2763b
longrope (#886) 2024-07-12 07:19:11 -07:00
Yi Wang
6da07fb1b0
make models/phi3.py and models/phi3small.py compatible with mypy (#833) 2024-06-12 06:53:55 -07:00
JosefAlbers
fda41545a6
Su-RoPE(Rotary Position Embedding) for Phi-3 (#813)
* Su-RoPE

* nits

* Update su_rope.py

* Update su_rope.py

Per GPT4: "The error TypeError: 'type' object is not subscriptable is caused by using the type hint list[float] in a version of Python that does not support it. This syntax is only available in Python 3.9 and later."

* Ran isort

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-11 06:20:04 -07:00
Prince Canuma
69700d8431
Add support for Phi-3 Medium (#790)
* update to support phi-3 medium

* fuse qkv split
2024-05-22 16:47:06 -07:00
Awni Hannun
ee60e2a9d5
Kv cache (#643)
* in place kv_cache

* fix

* fix kv cache size

* partially fix kv cache dtype

* step kv cache

* multiple of step size

* more teests + kv cache

* more kv cache

* udpate all models to use kv cache
2024-05-08 08:18:13 -07:00
Prince Canuma
abcd891851
Add support for phi-3 (#712)
* Add phi-3 modelling

* fix rope scaling warning

* add tests and update tuner utils

* update name and remove sanitize

* fix lora
2024-04-23 09:20:00 -07:00