Commit Graph

7 Commits

Author SHA1 Message Date
otriscon
46da74fea2
Unify attention mask in LLMs (#911)
* Unify attention mask creation in LLMs.

Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc
code to create a mask for the attention mechanism. This usually takes the form:

```
    mask = None
    if h.shape[1] > 1:
        mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
        mask = mask.astype(h.dtype)
```

This correctly creates a mask only if the input consists of more than one token.
But this code assumes the multi-token input is at the beginning of inference.
If, for example, we are evaluating multiple tokens because of speculative
decoding or prompt cache reuse, this mask will not have the correct shape and
and will cause the raising of an exception in the attention computation.

Some of the models correctly implement the mask creation with code like this:

```
    mask = None
    if h.shape[1] > 1:
        mask = create_additive_causal_mask(
            h.shape[1], cache[0].offset if cache is not None else 0
        )
        mask = mask.astype(h.dtype)
```

This commit unifies the attention mask creation for all models with a new
function `create_attention_mask`, reducing code duplication and helping all
models support inference performance enhancements like those mentioned above.

* Allow batches in LLM key-value cache

The current implementation of the LLM key-value cache assumes that
the input batch is of size 1. Input batching (evaluating multiple
alterative inputs at the same time) can be a valuable tool for
speculative sampling and other techniques.

This change removes the hard-coded batch size from the code that
resizes the key-value cache.

* Simplify causal mask creation

Use the same codepath regardless of whether there's an offset or
not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717).

* Use old-style type annotation to avoid linter error
2024-07-25 16:45:22 -07:00
Yi Wang
a7598e9456
Fix mypy errors with models/{qwen2,qwen2_moe,startcoder2}.py (#835)
* Fix starcoder.py

* Fix qwen2

* Remvoe unnecessary assert not None
2024-06-14 09:44:50 -07:00
Awni Hannun
09aaeac72c
fix moe conversion (#802) 2024-05-31 12:36:05 -07:00
Angelos Katharopoulos
9f671228cd
Block sparse MM MoEs (#782)
- Adds SwitchLinear
- Adds QuantizedSwitchLinear
2024-05-21 15:58:08 -07:00
Awni Hannun
ee60e2a9d5
Kv cache (#643)
* in place kv_cache

* fix

* fix kv cache size

* partially fix kv cache dtype

* step kv cache

* multiple of step size

* more teests + kv cache

* more kv cache

* udpate all models to use kv cache
2024-05-08 08:18:13 -07:00
Awni Hannun
92430df0a0
Fix lora for qwen moe (#743)
* fix lora for qwen moe

* use max seq length in test as well
2024-05-02 21:55:09 -07:00
Prince Canuma
d661440dbb
Add support for qwen2moe (#640)
* add sparsemoe block and update decoder logic

* update file name to match HF

* update name

* Code formatting

* update gates calculation

* add support for Qwen2MoE.

* fix pytest

* code formatting and fix missing comma in utils

* Remove decoder sparse step.

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>

* remove gate layer anti-quantisation

* remove unused argument

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2024-04-02 11:33:29 -07:00