Commit Graph

272 Commits

Author SHA1 Message Date
Awni Hannun
f530f56df2
don't use internal exception (#990) 2024-09-17 16:22:48 -07:00
Awni Hannun
6c2369e4b9
Fix bug in upload + docs nit (#981)
* fix bug in upload + docs nit

* nit
2024-09-07 14:46:57 -07:00
Awni Hannun
c3e3411756
Update LLM generation docs to use chat template (#973)
* fix docs

* add template to model cards as well

* revert

* version
2024-09-07 06:06:15 -07:00
Angelos Katharopoulos
324184d670
Fix the cache_prompt (#979) 2024-09-06 20:19:27 -07:00
madroid
bd29aec299
Support HuggingFace model tree (#957)
* Hub: Update quantization configuration fields

* Hub: add base_model metadata

* Hub: add quantization_config for model tree Quantized type

* Hub: update quantization_config value

* Hub: remove config print
2024-09-04 06:19:32 -07:00
Chime Ogbuji
83a209e200
Add prompt piping (#962)
* Initial commit of --prompt-only and prompt from STDIN feature

* Switch to using --verbose instead of --prompt-only

* Fix capitalization typo

* Fix reference to changed option name

* Update exception text
2024-09-03 13:29:10 -07:00
James Zhao
bf921afcbe
Make sure to import the correct "version" module when installing mlx_whisper and mlx_lm from local source code. (#969)
* Make sure to import the correct "version" module when installing the
mlx_whisper package from local source code.

* Make sure to import the correct "version" module when installing the mlx_lm package from local source code

* fix

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-09-03 13:16:21 -07:00
Awni Hannun
3c6e8b11af
fix (#965) 2024-08-30 05:56:27 -07:00
L
fc93c55723
feat(mlx_lm): Nemotron (#949)
* feat: Nemotron

https://huggingface.co/nvidia/Minitron-4B-Base

This is basically Llama with partial RoPE and LayerNorm instead of
BatchNorm. Also they add 1 to the LayerNorm weight for some reason.

* fixup! feat: Nemotron

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-29 21:08:57 -07:00
Awni Hannun
b1186e2a81
Docs on prompt scaling (#963)
* docs on prompt scaling

* remove unused var

* nits
2024-08-29 15:05:17 -07:00
Angelos Katharopoulos
1003a8b2dd
Add the ability to load the KV cache from a file (#956) 2024-08-28 22:11:45 -07:00
Angelos Katharopoulos
7f8c961287
Fix setattr for the TokenizerWrapper (#961) 2024-08-28 14:47:33 -07:00
Prince Canuma
b5e18ef1e3
Add Phi-3.5-MoE (#946)
* add phimoe

* add phimoe to tunner

* add switch_mlp

* fix SuScaled args

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-24 06:52:33 -07:00
Awni Hannun
6731254e76
Use fast rope (#945)
* use fast rope

* fix llama

* use fast rope for llama3.1

* requires unreleased mlx

* fix su

* fix deepseek v2

* only one of base or freqs

* nit

* fix

* hard code freqs
2024-08-23 13:18:51 -07:00
Awni Hannun
58591a1b41
fine tune deepseek (#932) 2024-08-22 10:41:21 -07:00
L
0164d2058b
feat: DeepSeek MoE v1 (#942)
* feat: deepseek v1

DeepSeek is still releasing models on the DeepSeek V1 architecture.

```sh
mlx_lm.convert --hf-path deepseek-ai/DeepSeek-Prover-V1.5-RL --mlx-path DeepSeek-Prover-V1.5-RL-8bit --q-bits 8 -q
mlx_lm.generate --model DeepSeek-Prover-V1.5-RL-8bit --ignore-chat-template --max-tokens 512 --prompt 'import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- The second and fourth terms of a geometric sequence are $2$ and $6$. Which of the following is a possible first term?
Show that it is $\frac{2\sqrt{3}}{3}$.-/
theorem amc12b_2003_p6 (a r : ℝ) (u : ℕ → ℝ) (h₀ : ∀ k, u k = a * r ^ k) (h₁ : u 1 = 2)
  (h₂ : u 3 = 6) : u 0 = 2 / Real.sqrt 3 ∨ u 0 = -(2 / Real.sqrt 3) := by'
```

* nits

* nits

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-17 07:18:09 -07:00
Awni Hannun
7be292c0c9
Handle longer prompt/generation (#931)
* rebase

* nits

* nit

* fix rotating cache with step prefill

* update version
2024-08-16 15:28:39 -07:00
Zai Thottakath
4e01700816
Allow the entire model to be targed for LoRA and DoRA fine tuning: LoRA and DoRA embeddings with small DoRALinear bug fix (#914)
* feature: LoRA adapter for Embeddings

* feature: wire in LoRAEmbedding into the tuner. Allow the embedding and non model.layers Linear layers to be targeted for fine tuning

* feature: DoRA adapter for Embeddings

* feature: wire in DoRAEmbedding

* bugfix: ensure self.m is recalculated when the linear layer is changed in DoRALinear.from_linear

* refactor: prefer from_base over from_linear or from_embedding. prefer fuse over to_linear or to_embedding

* cleanup: remove unused imports in test_dora.py

* refactor: remove unnecessary non_layer_modules

* cleanup: remove wrong comments for lora embedding dropout. remove uncessary parens in dora embedding dropout

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-16 07:38:36 -07:00
Chime Ogbuji
c50971e860
Min P implementation (#926)
* Min P implementation

* Change default to 0 (no min_p)

* nits

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-15 15:45:02 -07:00
Awni Hannun
9b83004631
Faster sampling with mx.compile (#937)
* faster sampling with compile

* fix test
2024-08-15 11:29:09 -07:00
Awni Hannun
95840f32e2
Fix whipser conversion for safetensors models (#935)
* fix whipser conversion for safetensor only. error in mlx lm for existing paths

* fix tests
2024-08-14 10:22:04 -07:00
Awni Hannun
33905447f9
Whisper updates to allow HF models (#923)
* simplify conversion and update convert for HF models

* use npz for compat

* fixes

* fixes

* fix gguf

* allow user supplied path
2024-08-09 11:11:58 -07:00
tidely
df744c98e6
Predict stop sequence matches during streaming (#541)
* Predict stop sequence matches during streaming

Check for overlap of stop sequences and the tokens array for potential sequence matches after more tokens get generated. Generate tokens until we can confirm that the stop sequence is not met.

* fix typo

* Change sequence_overlap logic

* range isn't inclusive, add 1 to max_overlap

* Add test_server.py

Added a test for the sequence_overlap method

* nits

* eos sequence

* finalize

---------

Co-authored-by: Y4hL <43219534+Y4hL@users.noreply.github.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-06 15:24:15 -07:00
Khush Gupta
8fa12b0058
Adapters loading (#902)
* Added functionality to load in adapters through post-requests so you do not need to restart the server

* ran pre-commit

* nits

* fix test

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-01 16:18:18 -07:00
madroid
85dc76f6e0
Server: support stream_options (#913)
* Server: support stream_options

see https://x.com/OpenAIDevs/status/1787573348496773423

* Server: support stream_options

* Server: check None type
2024-07-26 08:58:52 -07:00
otriscon
46da74fea2
Unify attention mask in LLMs (#911)
* Unify attention mask creation in LLMs.

Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc
code to create a mask for the attention mechanism. This usually takes the form:

```
    mask = None
    if h.shape[1] > 1:
        mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
        mask = mask.astype(h.dtype)
```

This correctly creates a mask only if the input consists of more than one token.
But this code assumes the multi-token input is at the beginning of inference.
If, for example, we are evaluating multiple tokens because of speculative
decoding or prompt cache reuse, this mask will not have the correct shape and
and will cause the raising of an exception in the attention computation.

Some of the models correctly implement the mask creation with code like this:

```
    mask = None
    if h.shape[1] > 1:
        mask = create_additive_causal_mask(
            h.shape[1], cache[0].offset if cache is not None else 0
        )
        mask = mask.astype(h.dtype)
```

This commit unifies the attention mask creation for all models with a new
function `create_attention_mask`, reducing code duplication and helping all
models support inference performance enhancements like those mentioned above.

* Allow batches in LLM key-value cache

The current implementation of the LLM key-value cache assumes that
the input batch is of size 1. Input batching (evaluating multiple
alterative inputs at the same time) can be a valuable tool for
speculative sampling and other techniques.

This change removes the hard-coded batch size from the code that
resizes the key-value cache.

* Simplify causal mask creation

Use the same codepath regardless of whether there's an offset or
not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717).

* Use old-style type annotation to avoid linter error
2024-07-25 16:45:22 -07:00
Anchen
7a3ab1620a
support load model by custom get_model_classes (#899)
* feature(mlx_lm): support load model by custom get classes

* rename the param
2024-07-25 11:01:17 -07:00
Alex Cheema
cd8efc7fbc
Add support for Llama-3.1 (#907)
* add dynamicNTK scaling rope

* remove unused var

* fix rope base

* llama3.1 fixes

* TODO for rope eval

* vectorise llama3 base freq calculation

* removed the arbitrary 2.0 rope_scale default case

* fix slow llama3.1 generation by evaluating stateless part of DynamicNTKScalingRoPE in init

* nits + format

* use mx.pi

* fix tests and add test for 3.1

---------

Co-authored-by: Prince Canuma <prince.gdt@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-23 13:21:32 -07:00
Prince Canuma
3f337e0f0a
Add Mistral NeMo (fix) (#895)
* fix head_dim

* Update llms/mlx_lm/models/llama.py

* fix kv error

* formatting

* Delete test.py

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-07-22 06:09:24 -07:00
Prince Canuma
3d365b612a
Add support for InternLM-2.5 (#871)
* fix internlm-2

* formatting

* add dynamic ntk rope

* formatting

* move dynamic scaling rope to intermlm2.py

* add default max_position_embeddings
2024-07-17 16:38:22 -07:00
Anchen
561dcf5643
Add support for deepseek coder v2 lite (#882)
* feat: add support for deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct

* fix softmax + some cleanup

* more nits

* fix rope

* fix original_max_position_embeddings in rope

* fix original_max_position_embeddings in rope config

* add group greedy

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-17 07:23:28 -07:00
Awni Hannun
f0c6c6e226
keep the server in a valid state (#889) 2024-07-15 18:35:36 -07:00
JosefAlbers
bfc1f2763b
longrope (#886) 2024-07-12 07:19:11 -07:00
Chime Ogbuji
8bf397e450
Pass use_dora parameter to linear_to_lora_layers (#885) 2024-07-11 14:34:34 -07:00
nicolov
fbe3247772
Add GPT-neox model (#863) 2024-07-11 06:13:17 -07:00
Alex Wozniakowski
63800c8feb
Example of response generation with optional arguments (#853)
* Generate response with optional arguments

* Reference response generation example

* Include transformers and sentencepiece

* Update example to run Mistral-7B-Instruct-v0.3

* Link to generation example

* Style changes from pre-commit
2024-07-09 06:49:59 -07:00
Awni Hannun
68e88d42fb
Fix server for openai package (#877)
* fix

* fixes for 9b
2024-07-08 12:34:31 -07:00
Awni Hannun
20e221f7f7
Add recurrent gemma (#856)
* add recurrent gemma

* fix window cache
2024-07-07 12:10:04 -07:00
n8programs
1e05aef344
Add logit soft capping to gemma, and fix precision issues (#857)
* Add logit soft capping to gemma, and fix precision issues

Gemma was babbling nonsense - so I figured out it was due to not having logit softcapping and precision issues causing NaNs (so I implemented the softcapping and added more float32 inference). gemma-27b-it-4bit now works flawlessly (or near-flawlessly, no sliding-window attention).

* get rid of comments

* get rid of last comments (sry lol)

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-02 07:52:39 -07:00
Angelos Katharopoulos
f212b770d8
Server loads the model on demand from the request (#851) 2024-06-27 11:37:57 -07:00
Awni Hannun
538339b599
gemma2 (#855) 2024-06-27 10:06:28 -07:00
Awni Hannun
9f10728145
fix yi (#852) 2024-06-27 06:38:19 -07:00
Chime Ogbuji
df6bc09d74
Configuration-based use of HF hub-hosted datasets for training (#701)
* Add hf_dataset configuration for using HF hub-hosted datasets for (Q)LoRA training

* Pre-commit formatting

* Fix YAML config example

* Print DS info

* Include name

* Add hf_dataset parameter default

* Remove TextHFDataset and CompletionsHFDataset and use Dataset and CompletionsDataset instead, adding a text_key constructor argument to the former (and changing it to work with a provided data structure instead of just from a JSON file), and prompt_key and completion_key arguments to the latter with defaults for backwards compatibility.

* nits

* update docs

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-26 10:20:50 -07:00
Chime Ogbuji
1d701a1831
Logprobs info to completion API (#806)
* Initial implementation

* Fix handling of return_step_logits in return

* Fixed OpenAI parameter expectations and logprob structure and datatypes

* pre-commit black formatting

* Remove unused parameter

* fix log probs

* fix colorize

* nits in server

* nits in server

* Fix top_logprobs structure (a dict) and include tokens in logprobs response

* nits

* fix types

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-23 10:35:13 -07:00
Yi Wang
a7598e9456
Fix mypy errors with models/{qwen2,qwen2_moe,startcoder2}.py (#835)
* Fix starcoder.py

* Fix qwen2

* Remvoe unnecessary assert not None
2024-06-14 09:44:50 -07:00
Awni Hannun
d8b073e3a7
Add eos token to lora fine-tunes (#818)
* add eos token to lora fine-tunes

* Comment
2024-06-12 07:44:21 -07:00
Nada Amin
3cc58e17fb
Tweaks to run dspy-produced calls to the server, with gemma template. (#810)
* Tweaks to run dspy-produced calls to the server, with gemma template.

following comment https://github.com/stanfordnlp/dspy/issues/385#issuecomment-1998939936

can try it out with:
```sh
python -m server --model mlx-community/gemma-1.1-7b-it-4bit --port 1143
```
modulo patching the relative imports in server.py
```
-from .tokenizer_utils import TokenizerWrapper
-from .utils import generate_step, load
+from mlx_lm.tokenizer_utils import TokenizerWrapper
+from mlx_lm.utils import generate_step, load
```

and then, ont the dspy side:
```python
import dspy
lm = dspy.OpenAI(model_type="chat", api_base="http://localhost:11434/v1/", api_key="not_needed", max_tokens=250)
lm("hello")
```

* simpler way to validate float or int

* remove logic that works around incompatible templates, too gemma specific

* tweak messages for common denominator

* use generate.py workaround for DBXR

* put behind flag

* oops

* Solution to chat template issue: pass in a custom template!

The template should likely adhere to the OpenAI chat model.
Here is such a template for Gemma.

--chat-template "{{ bos_token }}{% set extra_system = '' %}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{% if role == 'system' %}{% set extra_system = extra_system + message['content'] %}{% else %}{% if role == 'user' and extra_system %}{% set message_system = 'System: ' + extra_system %}{% else %}{% set message_system = '' %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message_system + message['content'] | trim + '<end_of_turn>\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}"

* remove convoluted solution

* Tweak for when None is provided explicitly, and must be set to [] too.

For example, the outlines library provides None explicitly.

* style

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-12 07:17:06 -07:00
Yi Wang
6da07fb1b0
make models/phi3.py and models/phi3small.py compatible with mypy (#833) 2024-06-12 06:53:55 -07:00
JosefAlbers
fda41545a6
Su-RoPE(Rotary Position Embedding) for Phi-3 (#813)
* Su-RoPE

* nits

* Update su_rope.py

* Update su_rope.py

Per GPT4: "The error TypeError: 'type' object is not subscriptable is caused by using the type hint list[float] in a version of Python that does not support it. This syntax is only available in Python 3.9 and later."

* Ran isort

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-11 06:20:04 -07:00
Yi Wang
a54dfd698e
Correct the type annotation of cache in llama.py (#828)
* Update

* Fix isort
2024-06-10 15:18:34 -07:00