4 Commits

Author SHA1 Message Date
Anthony
e52c128d11 Use model.safetensors with Whisper (#1399)
Some checks failed
Test / check_lint (push) Has been cancelled
2025-12-15 06:17:08 -08:00
Awni Hannun
7ddca42f4d switch to github actions (#1394)
Some checks failed
Test / check_lint (push) Has been cancelled
2025-11-20 09:57:43 -08:00
Armin Stross-Radschinski
21a4d4cdab Update whisper command line help mentioning --word-timestamps (#1390) 2025-10-07 11:19:46 -07:00
Awni Hannun
8e4391ca21 whisper nits (#1388) 2025-09-03 13:18:50 -07:00
15 changed files with 38 additions and 970 deletions

View File

@@ -1,40 +0,0 @@
version: 2.1
orbs:
apple: ml-explore/pr-approval@0.1.0
jobs:
linux_build_and_test:
docker:
- image: cimg/python:3.9
steps:
- checkout
- run:
name: Run style checks
command: |
pip install pre-commit
pre-commit run --all
if ! git diff --quiet; then echo 'Style checks failed, please install pre-commit and run pre-commit run --all and push the change'; exit 1; fi
workflows:
build_and_test:
when:
matches:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
jobs:
- linux_build_and_test
prb:
when:
matches:
pattern: "^pull/\\d+(/head)?$"
value: << pipeline.git.branch >>
jobs:
- hold:
type: approval
- apple/authenticate:
context: pr-approval
- linux_build_and_test:
requires: [ hold ]

25
.github/workflows/pull_request.yml vendored Normal file
View File

@@ -0,0 +1,25 @@
name: Test
on:
push:
branches: ["main"]
pull_request:
permissions:
contents: read
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.ref != 'refs/head/main' }}
jobs:
check_lint:
if: github.repository == 'ml-explore/mlx-examples'
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v5
- uses: actions/setup-python@v6
with:
python-version: "3.10"
- uses: pre-commit/action@v3.0.1

Binary file not shown.

Before

Width:  |  Height:  |  Size: 208 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

View File

@@ -1,195 +0,0 @@
import mnist
import argparse
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
# Generator Block
def GenBlock(in_dim:int,out_dim:int):
return nn.Sequential(
nn.Linear(in_dim,out_dim),
nn.BatchNorm(out_dim, 0.8),
nn.LeakyReLU(0.2)
)
# Generator Model
class Generator(nn.Module):
def __init__(self, z_dim:int = 32, im_dim:int = 784, hidden_dim: int = 256):
super(Generator, self).__init__()
self.gen = nn.Sequential(
GenBlock(z_dim, hidden_dim),
GenBlock(hidden_dim, hidden_dim * 2),
GenBlock(hidden_dim * 2, hidden_dim * 4),
nn.Linear(hidden_dim * 4,im_dim),
)
def __call__(self, noise):
x = self.gen(noise)
return mx.tanh(x)
# make 2D noise with shape n_samples x z_dim
def get_noise(n_samples:list[int], z_dim:int)->list[int]:
return mx.random.normal(shape=(n_samples, z_dim))
#---------------------------------------------#
# Discriminator Block
def DisBlock(in_dim:int,out_dim:int):
return nn.Sequential(
nn.Linear(in_dim,out_dim),
nn.LeakyReLU(negative_slope=0.2),
nn.Dropout(0.3),
)
# Discriminator Model
class Discriminator(nn.Module):
def __init__(self,im_dim:int = 784, hidden_dim:int = 256):
super(Discriminator, self).__init__()
self.disc = nn.Sequential(
DisBlock(im_dim, hidden_dim * 4),
DisBlock(hidden_dim * 4, hidden_dim * 2),
DisBlock(hidden_dim * 2, hidden_dim),
nn.Linear(hidden_dim,1),
nn.Sigmoid()
)
def __call__(self, noise):
return self.disc(noise)
# Discriminator Loss
def disc_loss(gen, disc, real, num_images, z_dim):
noise = mx.array(get_noise(num_images, z_dim))
fake_images = gen(noise)
fake_disc = disc(fake_images)
fake_labels = mx.zeros((fake_images.shape[0],1))
fake_loss = mx.mean(nn.losses.binary_cross_entropy(fake_disc,fake_labels,with_logits=True))
real_disc = mx.array(disc(real))
real_labels = mx.ones((real.shape[0],1))
real_loss = mx.mean(nn.losses.binary_cross_entropy(real_disc,real_labels,with_logits=True))
disc_loss = (fake_loss + real_loss) / 2.0
return disc_loss
# Genearator Loss
def gen_loss(gen, disc, num_images, z_dim):
noise = mx.array(get_noise(num_images, z_dim))
fake_images = gen(noise)
fake_disc = mx.array(disc(fake_images))
fake_labels = mx.ones((fake_images.shape[0],1))
gen_loss = nn.losses.binary_cross_entropy(fake_disc,fake_labels,with_logits=True)
return mx.mean(gen_loss)
# make batch of images
def batch_iterate(batch_size: int, ipt: list[int])-> list[int]:
perm = np.random.permutation(len(ipt))
for s in range(0, len(ipt), batch_size):
ids = perm[s : s + batch_size]
yield ipt[ids]
# plot batch of images at epoch steps
def show_images(epoch_num:int,imgs:list[int],num_imgs:int = 25):
if (imgs.shape[0] > 0):
fig,axes = plt.subplots(5, 5, figsize=(5, 5))
for i, ax in enumerate(axes.flat):
img = mx.array(imgs[i]).reshape(28,28)
ax.imshow(img,cmap='gray')
ax.axis('off')
plt.tight_layout()
plt.savefig('gen_images/img_{}.png'.format(epoch_num))
plt.show()
def main(args:dict):
seed = 42
n_epochs = 500
z_dim = 128
batch_size = 128
lr = 2e-5
mx.random.seed(seed)
# Load the data
train_images,*_ = map(np.array, getattr(mnist,'mnist')())
# Normalization images => [-1,1]
train_images = train_images * 2.0 - 1.0
gen = Generator(z_dim)
mx.eval(gen.parameters())
gen_opt = optim.Adam(learning_rate=lr, betas=[0.5, 0.999])
disc = Discriminator()
mx.eval(disc.parameters())
disc_opt = optim.Adam(learning_rate=lr, betas=[0.5, 0.999])
# TODO training...
D_loss_grad = nn.value_and_grad(disc, disc_loss)
G_loss_grad = nn.value_and_grad(gen, gen_loss)
for epoch in tqdm(range(n_epochs)):
for idx,real in enumerate(batch_iterate(batch_size, train_images)):
# TODO Train Discriminator
D_loss,D_grads = D_loss_grad(gen, disc,mx.array(real), batch_size, z_dim)
# Update optimizer
disc_opt.update(disc, D_grads)
# Update gradients
mx.eval(disc.parameters(), disc_opt.state)
# TODO Train Generator
G_loss,G_grads = G_loss_grad(gen, disc, batch_size, z_dim)
# Update optimizer
gen_opt.update(gen, G_grads)
# Update gradients
mx.eval(gen.parameters(), gen_opt.state)
if epoch%100==0:
print("Epoch: {}, iteration: {}, Discriminator Loss:{}, Generator Loss: {}".format(epoch,idx,D_loss,G_loss))
fake_noise = mx.array(get_noise(batch_size, z_dim))
fake = gen(fake_noise)
show_images(epoch,fake)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Train a simple GAN on MNIST with MLX.")
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
parser.add_argument(
"--dataset",
type=str,
default="mnist",
choices=["mnist", "fashion_mnist"],
help="The dataset to use.",
)
args = parser.parse_args()
if not args.gpu:
mx.set_default_device(mx.cpu)
main(args)

View File

@@ -1,83 +0,0 @@
# Copyright © 2023 Apple Inc.
import gzip
import os
import pickle
from urllib import request
import numpy as np
def mnist(
save_dir="/tmp",
base_url="https://raw.githubusercontent.com/fgnt/mnist/master/",
filename="mnist.pkl",
):
"""
Load the MNIST dataset in 4 tensors: train images, train labels,
test images, and test labels.
Checks `save_dir` for already downloaded data otherwise downloads.
Download code modified from:
https://github.com/hsjeong5/MNIST-for-Numpy
"""
def download_and_save(save_file):
filename = [
["training_images", "train-images-idx3-ubyte.gz"],
["test_images", "t10k-images-idx3-ubyte.gz"],
["training_labels", "train-labels-idx1-ubyte.gz"],
["test_labels", "t10k-labels-idx1-ubyte.gz"],
]
mnist = {}
for name in filename:
out_file = os.path.join("/tmp", name[1])
request.urlretrieve(base_url + name[1], out_file)
for name in filename[:2]:
out_file = os.path.join("/tmp", name[1])
with gzip.open(out_file, "rb") as f:
mnist[name[0]] = np.frombuffer(f.read(), np.uint8, offset=16).reshape(
-1, 28 * 28
)
for name in filename[-2:]:
out_file = os.path.join("/tmp", name[1])
with gzip.open(out_file, "rb") as f:
mnist[name[0]] = np.frombuffer(f.read(), np.uint8, offset=8)
with open(save_file, "wb") as f:
pickle.dump(mnist, f)
save_file = os.path.join(save_dir, filename)
if not os.path.exists(save_file):
download_and_save(save_file)
with open(save_file, "rb") as f:
mnist = pickle.load(f)
def preproc(x):
return x.astype(np.float32) / 255.0
mnist["training_images"] = preproc(mnist["training_images"])
mnist["test_images"] = preproc(mnist["test_images"])
return (
mnist["training_images"],
mnist["training_labels"].astype(np.uint32),
mnist["test_images"],
mnist["test_labels"].astype(np.uint32),
)
def fashion_mnist(save_dir="/tmp"):
return mnist(
save_dir,
base_url="http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/",
filename="fashion_mnist.pkl",
)
if __name__ == "__main__":
train_x, train_y, test_x, test_y = mnist()
assert train_x.shape == (60000, 28 * 28), "Wrong training set size"
assert train_y.shape == (60000,), "Wrong training set size"
assert test_x.shape == (10000, 28 * 28), "Wrong test set size"
assert test_y.shape == (10000,), "Wrong test set size"

File diff suppressed because one or more lines are too long

View File

@@ -11,12 +11,6 @@ audio_file = "mlx_whisper/assets/ls_test.flac"
def parse_arguments():
parser = argparse.ArgumentParser(description="Benchmark script.")
parser.add_argument(
"--mlx-dir",
type=str,
default="mlx_models",
help="The folder of MLX models",
)
parser.add_argument(
"--all",
action="store_true",

View File

@@ -382,7 +382,7 @@ if __name__ == "__main__":
# Save weights
print("[INFO] Saving")
mx.save_safetensors(str(mlx_path / "weights.safetensors"), weights)
mx.save_safetensors(str(mlx_path / "model.safetensors"), weights)
# Save config.json with model_type
with open(str(mlx_path / "config.json"), "w") as f:

View File

@@ -156,42 +156,42 @@ def build_parser():
"--prepend-punctuations",
type=str,
default="\"'“¿([{-",
help="If word-timestamps is True, merge these punctuation symbols with the next word",
help="If --word-timestamps is True, merge these punctuation symbols with the next word",
)
parser.add_argument(
"--append-punctuations",
type=str,
default="\"'.。,!?::”)]}、",
help="If word_timestamps is True, merge these punctuation symbols with the previous word",
help="If --word-timestamps is True, merge these punctuation symbols with the previous word",
)
parser.add_argument(
"--highlight-words",
type=str2bool,
default=False,
help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt",
help="(requires --word-timestamps True) underline each word as it is spoken in srt and vtt",
)
parser.add_argument(
"--max-line-width",
type=int,
default=None,
help="(requires --word_timestamps True) the maximum number of characters in a line before breaking the line",
help="(requires --word-timestampss True) the maximum number of characters in a line before breaking the line",
)
parser.add_argument(
"--max-line-count",
type=int,
default=None,
help="(requires --word_timestamps True) the maximum number of lines in a segment",
help="(requires --word-timestamps True) the maximum number of lines in a segment",
)
parser.add_argument(
"--max-words-per-line",
type=int,
default=None,
help="(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment",
help="(requires --word-timestamps True, no effect with --max-line-width) the maximum number of words in a segment",
)
parser.add_argument(
"--hallucination-silence-threshold",
type=optional_float,
help="(requires --word_timestamps True) skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected",
help="(requires --word-timestamps True) skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected",
)
parser.add_argument(
"--clip-timestamps",

View File

@@ -26,6 +26,9 @@ def load_model(
model_args = whisper.ModelDimensions(**config)
# Prefer model.safetensors, fall back to weights.safetensors, then weights.npz
wf = model_path / "model.safetensors"
if not wf.exists():
wf = model_path / "weights.safetensors"
if not wf.exists():
wf = model_path / "weights.npz"

View File

@@ -62,7 +62,7 @@ class ModelHolder:
def transcribe(
audio: Union[str, np.ndarray, mx.array],
*,
path_or_hf_repo: str = "mlx-community/whisper-tiny",
path_or_hf_repo: str = "mlx-community/whisper-turbo",
verbose: Optional[bool] = None,
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
compression_ratio_threshold: Optional[float] = 2.4,