1 Commits
awq ... awq-tq

Author SHA1 Message Date
Alex Barron
ae53ed9090 add TesseraQ rounding 2024-12-19 19:35:26 -08:00

View File

@@ -1,9 +1,12 @@
# Learned quantization using AWQ:
# Learned quantization using AWQ and TesseraQ:
# References:
# AWQ
# AWQ:
# https://arxiv.org/abs/2306.00978
# https://github.com/mit-han-lab/llm-awq
# TesseraQ:
# https://arxiv.org/abs/2410.19103
# https://github.com/Intelligent-Computing-Lab-Yale/TesseraQ
import argparse
import glob
@@ -13,19 +16,52 @@ from typing import Callable
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
from datasets import Dataset, load_dataset
from mlx.utils import tree_flatten, tree_map_with_path
from mlx.nn.utils import average_gradients
from mlx.utils import tree_flatten, tree_map, tree_map_with_path
from mlx_lm.models.base import create_attention_mask
from mlx_lm.tokenizer_utils import TokenizerWrapper
from mlx_lm.utils import fetch_from_hub, get_model_path, save_config, save_weights
from tqdm import tqdm
ROUNDING_THRESHOLDS = [
0.8,
0.65,
0.5,
0.43,
0.38,
0.34,
0.3,
0.27,
0.24,
0.21,
0.18,
0.15,
0.12,
0.10,
0.08,
0.06,
0.04,
0.02,
0.01,
0.005,
]
def mse(x, y):
return ((x - y).astype(mx.float32)) ** 2
def sigmoid(x: mx.array, gamma: float = -0.1, zeta: float = 1.1):
return mx.clip(nn.sigmoid(x) * (zeta - gamma) + gamma, 0, 1)
def sigmoid_inverse(y: mx.array, gamma: float = -0.1, zeta: float = 1.1):
return -mx.log((zeta - gamma) / (y - gamma) - 1)
def run_layer(layer: nn.Module, x: mx.array, batch_size: int = 32, **kwargs):
y = []
for i in range(0, x.shape[0], batch_size):
@@ -50,7 +86,7 @@ def search_best_scale(
quantize_func: Callable,
block: nn.Module | None = None,
layer_kwargs: dict | None = None,
n_grid: int = 20,
n_grid: int = 1,
):
group = mx.distributed.init() if mx.distributed.is_available() else None
layer_kwargs = layer_kwargs or {}
@@ -160,7 +196,7 @@ def search_best_clip(
x: mx.array,
quantize_func: Callable,
group_size: int,
n_grid: int = 20,
n_grid: int = 2,
max_shrink: float = 0.5,
subsample: int = 4,
batch_size: int = 64,
@@ -248,6 +284,134 @@ def clip_block(
tree_map_with_path(apply_clip, block.leaf_modules(), is_leaf=nn.Module.is_module)
class RoundQuant(nn.Module):
def __init__(self, module, group_size: int = 64, bits: int = 3):
super().__init__()
self.bits = bits
self.group_size = group_size
self._weight = module.weight
if hasattr(module, "bias"):
self._bias = module.bias
_, self._scales, self._biases = mx.quantize(
self._weight, group_size=group_size, bits=bits
)
self._scales = self._scales[..., mx.newaxis]
self._biases = self._biases[..., mx.newaxis]
self._weight = self._weight.reshape(self._weight.shape[0], -1, group_size)
rounding = self._weight / self._scales
rounding = rounding - mx.floor(rounding)
self.rounding = sigmoid_inverse(rounding)
self.v = mx.zeros_like(self._scales)
def __call__(self, x: mx.array):
q = (self._weight - self._biases) / self._scales
q = mx.floor(q) + sigmoid(self.rounding)
q = mx.clip(q, 0, 2**self.bits - 1)
w = (q * self._scales * 2 * sigmoid(self.v)) + self._biases
w = w.reshape(w.shape[0], -1)
if hasattr(self, "_bias"):
x = mx.addmm(self._bias, x, w.T)
else:
x = x @ w.T
return x
def to_quantized(self, group_size: int = 64, bits: int = 3):
assert (
group_size == self.group_size and bits == self.bits
), "Quantization parameters must match"
w = self._weight
output_dims, input_dims = w.shape[0], w.shape[1] * w.shape[2]
use_bias = hasattr(self, "_bias")
q = (w - self._biases) / self._scales
q = mx.floor(q) + sigmoid(self.rounding)
q = mx.clip(q, 0, 2**bits - 1)
q = q.astype(mx.uint32)
w = q * self._scales * 2 * sigmoid(self.v) + self._biases
w = w.reshape(w.shape[0], -1)
q = q.reshape(q.shape[0], -1)
bitarr = (q[..., mx.newaxis] >> mx.arange(bits, dtype=mx.uint32)) & 1
w_q = bitarr.reshape((q.shape[0], -1, 32))
w_q = (w_q << mx.arange(32, dtype=mx.uint32)).sum(axis=-1)
qlayer = nn.QuantizedLinear(input_dims, output_dims, use_bias, group_size, bits)
new_scales = self._scales * 2 * sigmoid(self.v)
qlayer.weight = w_q
qlayer.scales = new_scales[..., 0]
qlayer.biases = self._biases[..., 0]
if use_bias:
qlayer.bias = self._bias
return qlayer
def round_block(
block: nn.Module,
inputs: mx.array,
outputs: mx.array,
group_size: int = 64,
bits: int = 3,
layer_kwargs: dict | None = None,
batch_size: int = 4,
):
layer_kwargs = layer_kwargs or {}
block.freeze()
leaves = block.leaf_modules()
rounded = tree_map(
lambda m: RoundQuant(m, group_size, bits) if isinstance(m, nn.Linear) else m,
leaves,
is_leaf=nn.Module.is_module,
)
block.update_modules(rounded)
def hard_round(module, threshold: float = 0):
if not isinstance(module, RoundQuant):
return module
score = mx.abs(sigmoid(module.rounding) - 0.5)
value = mx.array(np.quantile(score.astype(mx.float32), q=threshold))
rounding = mx.where(
sigmoid(module.rounding) > value + 0.5, float("inf"), module.rounding
)
module.rounding = mx.where(
sigmoid(module.rounding) <= 0.5 - value, -float("inf"), rounding
)
return module
for threshold in ROUNDING_THRESHOLDS:
print("threshold", threshold)
optimizer = optim.Adam(learning_rate=1e-3)
tree_map(
lambda m: hard_round(m, threshold),
block.leaf_modules(),
is_leaf=nn.Module.is_module,
)
def loss(block, inputs, outputs):
outputs_q = run_layer(block, inputs, **layer_kwargs)
return mse(outputs, outputs_q).mean()
loss_value_and_grad = nn.value_and_grad(block, loss)
for i in range(0, inputs.shape[0], batch_size):
lvalue, grad = loss_value_and_grad(
block, inputs[i : i + batch_size], outputs[i : i + batch_size]
)
if mx.distributed.is_available():
grad = average_gradients(grad)
optimizer.update(block, grad)
mx.eval(block.parameters(), optimizer.state, lvalue)
print(lvalue)
tree_map(hard_round, block.leaf_modules(), is_leaf=nn.Module.is_module)
def awq_quantize(
model,
inputs: mx.array,
@@ -325,6 +489,16 @@ def awq_quantize(
group_size=group_size,
)
print("Rounding block")
round_block(
block=layer,
inputs=inputs,
outputs=outputs,
group_size=group_size,
bits=bits,
layer_kwargs={"mask": mask},
)
nn.quantize(layer, group_size=group_size, bits=bits)
outputs_q = run_layer(layer, inputs, mask=mask)
loss = mse(outputs, outputs_q).sum()