# Copyright © 2023-2024 Apple Inc. from dataclasses import dataclass from typing import Optional, Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention from .cache import KVCache, RotatingKVCache @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int = 4096 head_dim: int = 128 num_hidden_layers: int = 32 intermediate_size: int = 14336 num_attention_heads: int = 32 num_key_value_heads: int = 8 rope_theta: float = 50000.0 vocab_size: int = 256000 layer_norm_eps: float = 1e-05 logit_scale: float = 0.0625 attention_bias: bool = False layer_norm_bias: bool = False sliding_window: int = 4096 sliding_window_pattern: int = 4 class Attention(nn.Module): def __init__(self, args: ModelArgs, layer_idx: int): super().__init__() self.args = args self.layer_idx = layer_idx dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads self.head_dim = head_dim = args.head_dim if (head_dim * n_heads) != dim: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {dim}" f" and `num_heads`: {n_heads})." ) self.scale = head_dim**-0.5 attetion_bias = args.attention_bias self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attetion_bias) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attetion_bias) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attetion_bias) self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta) self.use_sliding_window = (layer_idx + 1) % args.sliding_window_pattern != 0 def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) # Apply RoPE only if sliding window is enabled if self.use_sliding_window: if cache is None: queries = self.rope(queries) keys = self.rope(keys) else: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) if cache is not None: keys, values = cache.update_and_fetch(keys, values) if self.use_sliding_window and mask is not None: key_len = keys.shape[-2] if mask.shape[-1] != key_len: mask = mask[..., -key_len:] output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) def __call__(self, x): return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs, layer_idx: int): super().__init__() self.hidden_size = args.hidden_size self.n_heads = args.num_attention_heads self.self_attn = Attention(args, layer_idx) self.mlp = MLP(args.hidden_size, args.intermediate_size) self.input_layernorm = nn.LayerNorm( args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: h = self.input_layernorm(x) attn_h = self.self_attn(h, mask, cache) ff_h = self.mlp(h) return attn_h + ff_h + x class CohereModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args, layer_idx=i) for i in range(args.num_hidden_layers) ] self.norm = nn.LayerNorm( args.hidden_size, eps=args.layer_norm_eps, bias=args.layer_norm_bias ) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ): h = self.embed_tokens(inputs) if cache is None: cache = [None] * len(self.layers) if mask is None: j = self.args.sliding_window_pattern mask = create_attention_mask(h, cache[j - 1 : j]) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model_type = args.model_type self.model = CohereModel(args) self.args = args def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ): out = self.model(inputs, mask, cache) out = self.model.embed_tokens.as_linear(out) out = out * self.model.args.logit_scale return out def make_cache(self): caches = [] for i in range(self.args.num_hidden_layers): if ( i % self.args.sliding_window_pattern == self.args.sliding_window_pattern - 1 ): caches.append(KVCache()) else: caches.append( RotatingKVCache(max_size=self.args.sliding_window, keep=0) ) return caches @property def layers(self): return self.model.layers