from typing import List, Optional, Tuple import mlx.core as mx import mlx.nn as nn import numpy as np from mlx.utils import tree_map from transformers import T5Config def _relative_position_bucket( relative_position, bidirectional=True, num_buckets=32, max_distance=128 ): """ Adapted from HF Tensorflow: https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).astype(mx.int16) * num_buckets relative_position = mx.abs(relative_position) else: relative_position = -mx.minimum( relative_position, mx.zeros_like(relative_position) ) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance scale = (num_buckets - max_exact) / np.log(max_distance / max_exact) relative_position_if_large = max_exact + ( mx.log(relative_position.astype(mx.float32) / max_exact) * scale ).astype(mx.int16) relative_position_if_large = mx.minimum(relative_position_if_large, num_buckets - 1) relative_buckets += mx.where( is_small, relative_position, relative_position_if_large ) return relative_buckets class RelativePositionBias(nn.Module): def __init__(self, config: T5Config, bidirectional: bool): self.bidirectional = bidirectional self.num_buckets = config.relative_attention_num_buckets self.max_distance = config.relative_attention_max_distance self.n_heads = config.num_heads self.embeddings = nn.Embedding( config.relative_attention_num_buckets, config.num_heads ) def __call__(self, query_length: int, key_length: int, offset: int = 0): """Compute binned relative position bias""" context_position = mx.arange(offset, query_length)[:, None] memory_position = mx.arange(key_length)[None, :] # shape (query_length, key_length) relative_position = memory_position - context_position relative_position_bucket = _relative_position_bucket( relative_position, bidirectional=self.bidirectional, num_buckets=self.num_buckets, max_distance=self.max_distance, ) # shape (query_length, key_length, num_heads) values = self.embeddings(relative_position_bucket) # shape (num_heads, query_length, key_length) return values.transpose(2, 0, 1) class MultiHeadAttention(nn.Module): def __init__(self, config: T5Config): super().__init__() inner_dim = config.d_kv * config.num_heads self.num_heads = config.num_heads self.query_proj = nn.Linear(config.d_model, inner_dim, bias=False) self.key_proj = nn.Linear(config.d_model, inner_dim, bias=False) self.value_proj = nn.Linear(config.d_model, inner_dim, bias=False) self.out_proj = nn.Linear(inner_dim, config.d_model, bias=False) def __call__( self, queries: mx.array, keys: mx.array, values: mx.array, mask: Optional[mx.array], cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> Tuple[mx.array, Tuple[mx.array, mx.array]]: queries = self.query_proj(queries) keys = self.key_proj(keys) values = self.value_proj(values) num_heads = self.num_heads B, L, _ = queries.shape _, S, _ = keys.shape queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3) if cache is not None: key_cache, value_cache = cache keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) # Dimensions are [batch x num heads x sequence x hidden dim] scores = queries @ keys.transpose(0, 1, 3, 2) if mask is not None: scores = scores + mask.astype(scores.dtype) scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.out_proj(values_hat), (keys, values) class DenseActivation(nn.Module): def __init__(self, config: T5Config): super().__init__() mlp_dims = config.d_ff or config.d_model * 4 self.gated = config.feed_forward_proj.startswith("gated") if self.gated: self.wi_0 = nn.Linear(config.d_model, mlp_dims, bias=False) self.wi_1 = nn.Linear(config.d_model, mlp_dims, bias=False) else: self.wi = nn.Linear(config.d_model, mlp_dims, bias=False) self.wo = nn.Linear(mlp_dims, config.d_model, bias=False) activation = config.feed_forward_proj.removeprefix("gated-") if activation == "relu": self.act = nn.relu elif activation == "gelu": self.act = nn.gelu elif activation == "silu": self.act = nn.silu else: raise ValueError(f"Unknown activation: {activation}") def __call__(self, x): if self.gated: hidden_act = self.act(self.wi_0(x)) hidden_linear = self.wi_1(x) x = hidden_act * hidden_linear else: x = self.act(self.wi(x)) return self.wo(x) class TransformerEncoderLayer(nn.Module): def __init__(self, config: T5Config): super().__init__() self.attention = MultiHeadAttention(config) self.ln1 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon) self.ln2 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon) self.dense = DenseActivation(config) def __call__(self, x, mask): y = self.ln1(x) y, _ = self.attention(y, y, y, mask=mask) x = x + y y = self.ln2(x) y = self.dense(y) return x + y class TransformerEncoder(nn.Module): def __init__(self, config: T5Config): super().__init__() self.layers = [ TransformerEncoderLayer(config) for i in range(config.num_layers) ] self.ln = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon) self.relative_attention_bias = RelativePositionBias(config, bidirectional=True) def __call__(self, x: mx.array): pos_bias = self.relative_attention_bias(x.shape[1], x.shape[1]) for layer in self.layers: x = layer(x, mask=pos_bias) return self.ln(x) class TransformerDecoderLayer(nn.Module): def __init__(self, config: T5Config): super().__init__() self.self_attention = MultiHeadAttention(config) self.cross_attention = MultiHeadAttention(config) self.ln1 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon) self.ln2 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon) self.ln3 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon) self.dense = DenseActivation(config) def __call__( self, x: mx.array, memory: mx.array, mask: mx.array, memory_mask: mx.array, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> Tuple[mx.array, Tuple[mx.array, mx.array]]: y = self.ln1(x) y, new_cache = self.self_attention(y, y, y, mask, cache) x = x + y y = self.ln2(x) y, _ = self.cross_attention(y, memory, memory, memory_mask) x = x + y y = self.ln3(x) y = self.dense(y) x = x + y return x, new_cache def create_additive_causal_mask(N: int, offset: int = 0): rinds = mx.arange(offset + N) linds = mx.arange(offset, offset + N) if offset else rinds mask = linds[:, None] < rinds[None] return mask * -1e9 class TransformerDecoder(nn.Module): def __init__(self, config: T5Config): super().__init__() n_layers = getattr(config, "num_decoder_layers", config.num_layers) self.layers = [TransformerDecoderLayer(config) for i in range(n_layers)] self.ln = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon) self.relative_attention_bias = RelativePositionBias(config, bidirectional=False) def __call__(self, x, memory, cache=None): if cache[0] is not None: offset = cache[0][0].shape[2] else: offset = 0 T = x.shape[1] if T > 1: mask = create_additive_causal_mask(T, offset) else: mask = None pos_bias = self.relative_attention_bias(T + offset, T + offset, offset=offset) if mask is not None: mask += pos_bias else: mask = pos_bias for e, layer in enumerate(self.layers): x, cache[e] = layer(x, memory, mask, None, cache=cache[e]) x = self.ln(x) return x, cache class OutputHead(nn.Module): def __init__(self, config: T5Config): self.linear = nn.Linear(config.d_model, config.vocab_size, bias=False) def __call__(self, inputs): return self.linear(inputs) class Model(nn.Module): def __init__(self, config: T5Config): self.wte = nn.Embedding(config.vocab_size, config.d_model) self.encoder = TransformerEncoder(config) self.decoder = TransformerDecoder(config) self.tie_word_embeddings = config.tie_word_embeddings if not self.tie_word_embeddings: self.lm_head = OutputHead(config) self.model_dim = config.d_model self.reset_cache() def encode(self, inputs: mx.array): return self.encoder(self.wte(inputs)) def truncate_cache(self, num_to_truncate): if num_to_truncate <= 0: return cache_length = self.cache[0][0].shape[2] if num_to_truncate < cache_length: self.cache = tree_map(lambda x: x[:, :, :-num_to_truncate, :], self.cache) else: self.reset_cache() def reset_cache(self): self.cache = [None] * len(self.decoder.layers) def decode( self, inputs: mx.array, memory: mx.array, ): inputs = self.wte(inputs) y, self.cache = self.decoder(inputs, memory=memory, cache=self.cache) if not self.tie_word_embeddings: y *= self.model_dim**-0.5 y = self.lm_head(y) else: y = y @ self.wte.weight.T return y def __call__( self, inputs: mx.array, decoder_inputs: mx.array, ): return self.decode(decoder_inputs, self.encode(inputs))[0]