# Copyright © 2023 Apple Inc. import sys import warnings from typing import List, Optional, Tuple, Union import mlx.core as mx import numpy as np import tqdm from .audio import ( FRAMES_PER_SECOND, HOP_LENGTH, N_FRAMES, N_SAMPLES, SAMPLE_RATE, log_mel_spectrogram, pad_or_trim, ) from .decoding import DecodingOptions, DecodingResult from .load_models import load_model from .timing import add_word_timestamps from .tokenizer import LANGUAGES, get_tokenizer def _format_timestamp(seconds: float): assert seconds >= 0, "non-negative timestamp expected" milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}.{milliseconds:03d}" def _get_end(segments: List[dict]) -> Optional[float]: return next( (w["end"] for s in reversed(segments) for w in reversed(s["words"])), segments[-1]["end"] if segments else None, ) class ModelHolder: model = None model_path = None @classmethod def get_model(cls, model_path: str, dtype: mx.Dtype): if cls.model is None or model_path != cls.model_path: cls.model = load_model(model_path, dtype=dtype) cls.model_path = model_path return cls.model def transcribe( audio: Union[str, np.ndarray, mx.array], *, path_or_hf_repo: str = "mlx-community/whisper-tiny", verbose: Optional[bool] = None, temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), compression_ratio_threshold: Optional[float] = 2.4, logprob_threshold: Optional[float] = -1.0, no_speech_threshold: Optional[float] = 0.6, condition_on_previous_text: bool = True, initial_prompt: Optional[str] = None, word_timestamps: bool = False, prepend_punctuations: str = "\"'“¿([{-", append_punctuations: str = "\"'.。,,!!??::”)]}、", clip_timestamps: Union[str, List[float]] = "0", hallucination_silence_threshold: Optional[float] = None, **decode_options, ): """ Transcribe an audio file using Whisper Parameters ---------- audio: Union[str, np.ndarray, mx.array] The path to the audio file to open, or the audio waveform path_or_hf_repo: str The localpath to the Whisper model or HF Hub repo with the MLX converted weights. verbose: bool Whether to display the text being decoded to the console. If True, displays all the details, If False, displays minimal details. If None, does not display anything temperature: Union[float, Tuple[float, ...]] Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `compression_ratio_threshold` or `logprob_threshold`. compression_ratio_threshold: float If the gzip compression ratio is above this value, treat as failed logprob_threshold: float If the average log probability over sampled tokens is below this value, treat as failed no_speech_threshold: float If the no_speech probability is higher than this value AND the average log probability over sampled tokens is below `logprob_threshold`, consider the segment as silent condition_on_previous_text: bool if True, the previous output of the model is provided as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop, such as repetition looping or timestamps going out of sync. word_timestamps: bool Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment. prepend_punctuations: str If word_timestamps is True, merge these punctuation symbols with the next word append_punctuations: str If word_timestamps is True, merge these punctuation symbols with the previous word initial_prompt: Optional[str] Optional text to provide as a prompt for the first window. This can be used to provide, or "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those word correctly. decode_options: dict Keyword arguments to construct `DecodingOptions` instances clip_timestamps: Union[str, List[float]] Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process. The last end timestamp defaults to the end of the file. hallucination_silence_threshold: Optional[float] When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected Returns ------- A dictionary containing the resulting text ("text") and segment-level details ("segments"), and the spoken language ("language"), which is detected when `decode_options["language"]` is None. """ dtype = mx.float16 if decode_options.get("fp16", True) else mx.float32 model = ModelHolder.get_model(path_or_hf_repo, dtype) # Pad 30-seconds of silence to the input audio, for slicing mel = log_mel_spectrogram(audio, n_mels=model.dims.n_mels, padding=N_SAMPLES) content_frames = mel.shape[-2] - N_FRAMES content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE) if verbose: system_encoding = sys.getdefaultencoding() if system_encoding != "utf-8": make_safe = lambda x: x.encode(system_encoding, errors="replace").decode( system_encoding ) else: make_safe = lambda x: x if decode_options.get("language", None) is None: if not model.is_multilingual: decode_options["language"] = "en" else: if verbose: print( "Detecting language using up to the first 30 seconds. " "Use the `language` decoding option to specify the language" ) mel_segment = pad_or_trim(mel, N_FRAMES, axis=-2).astype(dtype) _, probs = model.detect_language(mel_segment) decode_options["language"] = max(probs, key=probs.get) if verbose is not None: print( f"Detected language: {LANGUAGES[decode_options['language']].title()}" ) language: str = decode_options["language"] task: str = decode_options.get("task", "transcribe") tokenizer = get_tokenizer( model.is_multilingual, num_languages=model.num_languages, language=language, task=task, ) if isinstance(clip_timestamps, str): clip_timestamps = [ float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else []) ] seek_points: List[int] = [round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps] if len(seek_points) == 0: seek_points.append(0) if len(seek_points) % 2 == 1: seek_points.append(content_frames) else: seek_points[-1] = min(content_frames, seek_points[-1]) seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2])) punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、" if word_timestamps and task == "translate": warnings.warn("Word-level timestamps on translations may not be reliable.") def decode_with_fallback(segment: mx.array) -> DecodingResult: temperatures = ( [temperature] if isinstance(temperature, (int, float)) else temperature ) decode_result = None for t in temperatures: kwargs = {**decode_options} if t > 0: # disable beam_size and patience when t > 0 kwargs.pop("beam_size", None) kwargs.pop("patience", None) else: # disable best_of when t == 0 kwargs.pop("best_of", None) options = DecodingOptions(**kwargs, temperature=t) decode_result = model.decode(segment, options) needs_fallback = False if ( compression_ratio_threshold is not None and decode_result.compression_ratio > compression_ratio_threshold ): needs_fallback = True # too repetitive if ( logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold ): needs_fallback = True # average log probability is too low if ( no_speech_threshold is not None and decode_result.no_speech_prob > no_speech_threshold ): needs_fallback = False # silence if not needs_fallback: break return decode_result clip_idx = 0 seek = seek_clips[clip_idx][0] input_stride = N_FRAMES // model.dims.n_audio_ctx # mel frames per output token: 2 time_precision = ( input_stride * HOP_LENGTH / SAMPLE_RATE ) # time per output token: 0.02 (seconds) all_tokens = [] all_segments = [] prompt_reset_since = 0 if initial_prompt is not None: initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip()) all_tokens.extend(initial_prompt_tokens) else: initial_prompt_tokens = [] def new_segment( *, start: float, end: float, tokens: mx.array, result: DecodingResult ): tokens = tokens.tolist() text_tokens = [token for token in tokens if token < tokenizer.eot] return { "seek": seek, "start": start, "end": end, "text": tokenizer.decode(text_tokens), "tokens": tokens, "temperature": result.temperature, "avg_logprob": result.avg_logprob, "compression_ratio": result.compression_ratio, "no_speech_prob": result.no_speech_prob, } # show the progress bar when verbose is False (if True, transcribed text will be printed) with tqdm.tqdm( total=content_frames, unit="frames", disable=verbose is not False ) as pbar: last_speech_timestamp = 0.0 for seek_clip_start, seek_clip_end in seek_clips: while seek < seek_clip_end: time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE) window_end_time = float((seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE) segment_size = min( N_FRAMES, content_frames - seek, seek_clip_end - seek ) mel_segment = mel[seek : seek + segment_size] segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE mel_segment = pad_or_trim(mel_segment, N_FRAMES, axis=-2).astype(dtype) decode_options["prompt"] = all_tokens[prompt_reset_since:] result: DecodingResult = decode_with_fallback(mel_segment) tokens = np.array(result.tokens) if no_speech_threshold is not None: # no voice activity check should_skip = result.no_speech_prob > no_speech_threshold if ( logprob_threshold is not None and result.avg_logprob > logprob_threshold ): # don't skip if the logprob is high enough, despite the no_speech_prob should_skip = False if should_skip: seek += ( segment_size # fast-forward to the next segment boundary ) continue previous_seek = seek current_segments = [] # anomalous words are very long/short/improbable def word_anomaly_score(word: dict) -> float: probability = word.get("probability", 0.0) duration = word["end"] - word["start"] score = 0.0 if probability < 0.15: score += 1.0 if duration < 0.133: score += (0.133 - duration) * 15 if duration > 2.0: score += duration - 2.0 return score def is_segment_anomaly(segment: Optional[dict]) -> bool: if segment is None or not segment["words"]: return False words = [ w for w in segment["words"] if w["word"] not in punctuation ] words = words[:8] score = sum(word_anomaly_score(w) for w in words) return score >= 3 or score + 0.01 >= len(words) def next_words_segment(segments: List[dict]) -> Optional[dict]: return next((s for s in segments if s["words"]), None) timestamp_tokens = tokens >= tokenizer.timestamp_begin single_timestamp_ending = timestamp_tokens[-2:].tolist() == [ False, True, ] consecutive = np.where( np.logical_and(timestamp_tokens[:-1], timestamp_tokens[1:]) )[0] consecutive += 1 if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens slices = consecutive.tolist() if single_timestamp_ending: slices.append(len(tokens)) last_slice = 0 for current_slice in slices: sliced_tokens = tokens[last_slice:current_slice] start_timestamp_pos = ( sliced_tokens[0].item() - tokenizer.timestamp_begin ) end_timestamp_pos = ( sliced_tokens[-1].item() - tokenizer.timestamp_begin ) current_segments.append( new_segment( start=time_offset + start_timestamp_pos * time_precision, end=time_offset + end_timestamp_pos * time_precision, tokens=sliced_tokens, result=result, ) ) last_slice = current_slice if single_timestamp_ending: # single timestamp at the end means no speech after the last timestamp. seek += segment_size else: # otherwise, ignore the unfinished segment and seek to the last timestamp last_timestamp_pos = ( tokens[last_slice - 1].item() - tokenizer.timestamp_begin ) seek += last_timestamp_pos * input_stride else: duration = segment_duration timestamps = tokens[timestamp_tokens.nonzero()[0]] if ( len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin ): # no consecutive timestamps but it has a timestamp; use the last one. last_timestamp_pos = ( timestamps[-1].item() - tokenizer.timestamp_begin ) duration = last_timestamp_pos * time_precision current_segments.append( new_segment( start=time_offset, end=time_offset + duration, tokens=tokens, result=result, ) ) seek += segment_size if word_timestamps: add_word_timestamps( segments=current_segments, model=model, tokenizer=tokenizer, mel=mel_segment, num_frames=segment_size, prepend_punctuations=prepend_punctuations, append_punctuations=append_punctuations, last_speech_timestamp=last_speech_timestamp, ) if not single_timestamp_ending: last_word_end = _get_end(current_segments) if last_word_end is not None and last_word_end > time_offset: seek = round(last_word_end * FRAMES_PER_SECOND) # skip silence before possible hallucinations if hallucination_silence_threshold is not None: threshold = hallucination_silence_threshold if not single_timestamp_ending: last_word_end = _get_end(current_segments) if ( last_word_end is not None and last_word_end > time_offset ): remaining_duration = window_end_time - last_word_end if remaining_duration > threshold: seek = round(last_word_end * FRAMES_PER_SECOND) else: seek = previous_seek + segment_size # if first segment might be a hallucination, skip leading silence first_segment = next_words_segment(current_segments) if first_segment is not None and is_segment_anomaly( first_segment ): gap = first_segment["start"] - time_offset if gap > threshold: seek = previous_seek + round(gap * FRAMES_PER_SECOND) continue # skip silence before any possible hallucination that is surrounded # by silence or more hallucinations hal_last_end = last_speech_timestamp for si in range(len(current_segments)): segment = current_segments[si] if not segment["words"]: continue if is_segment_anomaly(segment): next_segment = next_words_segment( current_segments[si + 1 :] ) if next_segment is not None: hal_next_start = next_segment["words"][0]["start"] else: hal_next_start = time_offset + segment_duration silence_before = ( segment["start"] - hal_last_end > threshold or segment["start"] < threshold or segment["start"] - time_offset < 2.0 ) silence_after = ( hal_next_start - segment["end"] > threshold or is_segment_anomaly(next_segment) or window_end_time - segment["end"] < 2.0 ) if silence_before and silence_after: seek = round( max(time_offset + 1, segment["start"]) * FRAMES_PER_SECOND ) if content_duration - segment["end"] < threshold: seek = content_frames current_segments[si:] = [] break hal_last_end = segment["end"] last_word_end = _get_end(current_segments) if last_word_end is not None: last_speech_timestamp = last_word_end if verbose: for segment in current_segments: start, end, text = ( segment["start"], segment["end"], segment["text"], ) line = f"[{_format_timestamp(start)} --> {_format_timestamp(end)}] {text}" print(make_safe(line)) # if a segment is instantaneous or does not contain text, clear it for i, segment in enumerate(current_segments): if ( segment["start"] == segment["end"] or segment["text"].strip() == "" ): segment["text"] = "" segment["tokens"] = [] segment["words"] = [] all_segments.extend( [ {"id": i, **segment} for i, segment in enumerate( current_segments, start=len(all_segments) ) ] ) all_tokens.extend( [ token for segment in current_segments for token in segment["tokens"] ] ) if not condition_on_previous_text or result.temperature > 0.5: # do not feed the prompt tokens if a high temperature was used prompt_reset_since = len(all_tokens) # update progress bar pbar.update(min(content_frames, seek) - previous_seek) return dict( text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]), segments=all_segments, language=language, )