# Copyright © 2024 Apple Inc. import math from dataclasses import dataclass, field from typing import Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): model_type: str = "mamba2" num_heads: int = 128 head_dim: int = 64 vocab_size: int = 32768 hidden_size: int = 4096 state_size: int = 128 num_hidden_layers: int = 64 layer_norm_epsilon: float = 1e-5 expand: int = 2 conv_kernel: int = 4 n_groups: int = 8 use_bias: bool = False use_conv_bias: bool = True initializer_range: float = 0.1 residual_in_fp32: bool = True time_step_rank: Union[int, str] = "auto" time_step_min: float = 0.001 time_step_max: float = 0.1 time_step_floor: float = 1e-4 time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) rescale_prenorm_residual: bool = False use_cache: bool = True rms_norm: bool = True chunk_size: int = 256 tie_word_embeddings: bool = False def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class Mamba2Cache: def __init__(self, num_layers): self.cache = [[None, None] for _ in range(num_layers)] def __getitem__(self, idx): return self.cache[idx] def __setitem__(self, idx, value): self.cache[idx] = value class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states class Mamba2Mixer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.intermediate_size = args.intermediate_size self.time_step_rank = args.time_step_rank self.conv_kernel_size = args.conv_kernel self.hidden_size = args.hidden_size self.state_size = args.state_size self.num_heads = args.num_heads self.head_dim = args.head_dim self.n_groups = args.n_groups self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size self.conv1d = nn.Conv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=args.use_conv_bias, kernel_size=args.conv_kernel, groups=self.conv_dim, padding=args.conv_kernel - 1 ) projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=args.use_bias ) self.act = nn.SiLU() self.dt_bias = mx.ones((self.num_heads,)) self.A_log = mx.log(mx.arange(1, self.num_heads + 1)) self.D = mx.ones((self.num_heads,)) self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias) def ssm_step(self, x, dt, state): B, L, C = x.shape print(f"x shape: {x.shape}") projected_states = self.in_proj(x) print(f"deltaBC shape: {projected_states.shape}") d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.state_size - self.num_heads) // 2 gate = projected_states[:, :, 2*d_mlp:2*d_mlp+self.intermediate_size] conv_state = projected_states[:, :, 2*d_mlp+self.intermediate_size:2*d_mlp+self.intermediate_size+self.conv_dim] time_step = projected_states[:, :, -self.num_heads:] print(f"conv_state shape before reshape: {conv_state.shape}") print(f"self.conv_dim: {self.conv_dim}") # Reshape and handle the case where L=1 conv_state = conv_state.reshape(B, self.conv_dim, L) if L == 1: # If sequence length is 1, we need to pad to apply convolution conv_state = mx.pad(conv_state, ((0, 0), (0, 0), (0, self.conv_kernel_size - 1))) conv_out = self.conv1d(conv_state) # If we padded, we need to remove the padding if L == 1: conv_out = conv_out[:, :, :L] # Reshape back to (B, L, C) conv_out = conv_out.transpose(0, 2, 1) x_and_conv_out, B, C = mx.split( conv_out, [self.intermediate_size, self.n_groups * self.state_size], axis=-1 ) dt = nn.softplus(time_step + self.dt_bias) dt = mx.clip(dt, self.args.time_step_min, self.args.time_step_max) B = B.reshape(-1, self.num_heads, self.head_dim, self.state_size) C = C.reshape(-1, self.num_heads, self.head_dim, self.state_size) dA = mx.exp(dt[:, :, None, None] * A[None, :, None, None]) dB = dt[:, :, None, None] * B new_state = state * dA + x_and_conv_out[:, :, None, None] * dB y = mx.sum(new_state * C, axis=-1) y = y + C[None, :, None] * x_and_conv_out y = self.norm(y.reshape(-1, self.intermediate_size), gate) output = self.out_proj(y) return output, new_state def __call__( self, x: mx.array, cache = None ): B, L, _ = x.shape if cache[0] is not None: # Using cached state conv_state, ssm_state = cache x = x[:, -1:] output, new_ssm_state = self.ssm_step(x, None, ssm_state) cache[1] = new_ssm_state # Update SSM state in cache else: conv_state, ssm_state = None, None outputs = [] for t in range(L): x = x[:, t:t+1] output, ssm_state = self.ssm_step(x, None, ssm_state) outputs.append(output) output = mx.concatenate(outputs, axis=1) cache[1] = ssm_state # Store final SSM state in cache # Update conv state in cache new_conv_state = x[:, -self.conv_kernel_size:] cache[0] = new_conv_state return output class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.residual_in_fp32 = args.residual_in_fp32 self.norm = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) self.mixer = Mamba2Mixer(args) def __call__( self, inputs: mx.array, cache=None, ): h = self.mixer(self.norm(inputs), cache=cache) r = inputs + h return r class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [Mamba2Block(args) for idx in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__( self, inputs: mx.array, cache=None ): hidden_states = self.embeddings(inputs) if cache is None: cache = Mamba2Cache(len(self.layers)) for i, layer in enumerate(self.layers): hidden_states = layer(hidden_states, cache[i]) hidden_states = self.norm_f(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None ): B, T = inputs.shape x = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(x) else: logits = self.lm_head(x) return logits def sanitize(self, weights): for k, v in weights.items(): if "conv1d.weight" in k and v.ndim == 3: weights[k] = v.moveaxis(2, 1) return weights def make_cache(self, batch_size: int = 1): return Mamba2Cache(len(self.backbone.layers)) @property def layers(self): return self.backbone.layers