# Copyright © 2024 Apple Inc. import math from dataclasses import dataclass, field from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): model_type: str = "mamba2" num_heads: int = 128 head_dim: int = 64 vocab_size: int = 32768 hidden_size: int = 4096 state_size: int = 128 num_hidden_layers: int = 64 layer_norm_epsilon: float = 1e-5 expand: int = 2 conv_kernel: int = 4 n_groups: int = 8 use_bias: bool = False use_conv_bias: bool = True initializer_range: float = 0.1 residual_in_fp32: bool = True time_step_rank: Union[int, str] = "auto" time_step_min: float = 0.001 time_step_max: float = 0.1 time_step_floor: float = 1e-4 time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) rescale_prenorm_residual: bool = False use_cache: bool = True rms_norm: bool = True chunk_size: int = 256 tie_word_embeddings: bool = False def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class Mamba2Cache: def __init__(self): self.cache = [None, None] def __setitem__(self, idx, value): self.cache[idx] = value def __getitem__(self, idx): return self.cache[idx] @property def state(self): return self.cache class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states class DepthWiseConv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.groups = groups if groups is not None else in_channels # Ensure in_channels and out_channels are the same for depthwise conv assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution" # Ensure groups is equal to in_channels for depthwise conv assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution" # Initialize weight with shape (out_channels, kernel_size, 1) self.weight = mx.random.normal((out_channels, kernel_size, 1)) self.bias = mx.zeros((out_channels,)) if bias else None def __call__(self, x, cache=None): B, L, C = x.shape _, K, _ = self.weight.shape if cache is not None: x = mx.concatenate([cache, x], axis=1) else: x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)]) y = mx.conv_general(x, self.weight, groups=self.groups) if self.bias is not None: y = y + self.bias return y, x[:, -K + 1 :, :] class Mamba2Mixer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.intermediate_size = args.intermediate_size self.time_step_rank = args.time_step_rank self.conv_kernel_size = args.conv_kernel self.hidden_size = args.hidden_size self.state_size = args.state_size self.num_heads = args.num_heads self.head_dim = args.hidden_size // args.num_heads self.n_groups = args.n_groups self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size self.conv1d = DepthWiseConv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=args.use_conv_bias, kernel_size=args.conv_kernel, groups=self.conv_dim, padding=args.conv_kernel - 1 ) projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=args.use_bias ) self.dt_bias = mx.ones((self.num_heads,)) self.A_log = mx.log(mx.arange(1, self.num_heads + 1)) self.D = mx.ones((self.num_heads,)) self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias) def ssm_step(self, x, state, dt_proj): A = -mx.exp(self.A_log) D = self.D delta = nn.softplus(dt_proj + self.dt_bias) B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1) B = B.reshape(-1, self.n_groups, self.state_size) C = C.reshape(-1, self.n_groups, self.state_size) if state is None: new_state = mx.expand_dims(delta, -1) * B else: new_state = mx.expand_dims(delta, -1) * (B + state * mx.exp(mx.expand_dims(delta, -1) * A)) y = mx.sum(new_state * C, axis=-1) y = y + D * x[:, :self.num_heads] return y, new_state def __call__(self, x, cache): B, T, D = x.shape if cache is None: cache = [None, None] outputs = [] for t in range(T): xt = x[:, t, :] xz = self.in_proj(xt) x_t, z_t, dt_proj = mx.split( xz, indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size], axis=-1 ) conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0]) x_t = conv_out.squeeze(1) x_t = nn.silu(x_t) y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj) z_t = nn.silu(z_t) # Print shapes for debugging print(f"y_t shape: {y_t.shape}") print(f"z_t shape: {z_t.shape}") print(f"self.num_heads: {self.num_heads}") print(f"self.intermediate_size: {self.intermediate_size}") print(f"self.head_dim: {self.head_dim}") # Flexible reshaping y_t_reshaped = y_t.reshape(B, -1, 1) z_t_reshaped = z_t.reshape(B, y_t_reshaped.shape[1], -1) # Print reshaped shapes print(f"y_t_reshaped shape: {y_t_reshaped.shape}") print(f"z_t_reshaped shape: {z_t_reshaped.shape}") # Element-wise multiplication output_t = y_t_reshaped * z_t_reshaped # Reshape to match the expected input of out_proj output_t = output_t.reshape(B, self.intermediate_size) print(f"output_t shape before out_proj: {output_t.shape}") print(f"out_proj weight shape: {self.out_proj.weight.shape}") output_t = self.out_proj(output_t) outputs.append(output_t) output = mx.stack(outputs, axis=1) return output class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.mixer = Mamba2Mixer(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): return self.mixer(self.norm(x), cache) + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [Mamba2Block(args) for idx in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__( self, inputs: mx.array, cache=None ): hidden_states = self.embeddings(inputs) if cache is None: cache = Mamba2Cache(len(self.layers)) for i, layer in enumerate(self.layers): hidden_states = layer(hidden_states, cache[i]) hidden_states = self.norm_f(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): B, T = inputs.shape x = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(x) else: logits = self.lm_head(x) return logits def sanitize(self, weights): for k, v in weights.items(): if "conv1d.weight" in k and v.ndim == 3: weights[k] = v.moveaxis(2, 1) return weights def make_cache(self, batch_size: int = 1): return [Mamba2Cache() for _ in range(len(self.layers))] @property def layers(self): return self.backbone.layers