# Copyright © 2023 Apple Inc. import argparse import time import mlx.core as mx import mlx.nn as nn import mlx.optimizers as optim import numpy as np import mnist class MLP(nn.Module): """A simple MLP.""" def __init__( self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int ): super().__init__() layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim] self.layers = [ nn.Linear(idim, odim) for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:]) ] def __call__(self, x): for l in self.layers[:-1]: x = mx.maximum(l(x), 0.0) return self.layers[-1](x) def loss_fn(model, X, y): return mx.mean(nn.losses.cross_entropy(model(X), y)) def eval_fn(model, X, y): return mx.mean(mx.argmax(model(X), axis=1) == y) def batch_iterate(batch_size, X, y): perm = mx.array(np.random.permutation(y.size)) for s in range(0, y.size, batch_size): ids = perm[s : s + batch_size] yield X[ids], y[ids] def main(args): seed = 0 num_layers = 2 hidden_dim = 32 num_classes = 10 batch_size = 256 num_epochs = 10 learning_rate = 1e-1 np.random.seed(seed) # Load the data train_images, train_labels, test_images, test_labels = map( mx.array, getattr(mnist, args.dataset)() ) # Load the model model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes) mx.eval(model.parameters()) loss_and_grad_fn = nn.value_and_grad(model, loss_fn) optimizer = optim.SGD(learning_rate=learning_rate) for e in range(num_epochs): tic = time.perf_counter() for X, y in batch_iterate(batch_size, train_images, train_labels): loss, grads = loss_and_grad_fn(model, X, y) optimizer.update(model, grads) mx.eval(model.parameters(), optimizer.state) accuracy = eval_fn(model, test_images, test_labels) toc = time.perf_counter() print( f"Epoch {e}: Test accuracy {accuracy.item():.3f}," f" Time {toc - tic:.3f} (s)" ) if __name__ == "__main__": parser = argparse.ArgumentParser("Train a simple MLP on MNIST with MLX.") parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.") parser.add_argument( "--dataset", type=str, default="mnist", choices=["mnist", "fashion_mnist"], help="The dataset to use.", ) args = parser.parse_args() if not args.gpu: mx.set_default_device(mx.cpu) main(args)