import math from dataclasses import dataclass from typing import Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): model_type: str max_position_embeddings: int = 2048 vocab_size: int = 51200 hidden_size: int = 2560 num_attention_heads: int = 32 num_hidden_layers: int = 32 num_key_value_heads: int = 32 partial_rotary_factor: float = 0.4 intermediate_size: int = 10240 layer_norm_eps: float = 1e-5 rope_theta: float = 10000.0 def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads class LayerNorm(nn.LayerNorm): def __call__(self, x: mx.array) -> mx.array: return super().__call__(x.astype(mx.float32)).astype(x.dtype) class PhiAttention(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.repeats = self.num_heads // self.num_key_value_heads self.rope_theta = config.rope_theta self.partial_rotary_factor = config.partial_rotary_factor if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear( self.hidden_size, self.num_heads * self.head_dim, bias=True ) self.k_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True ) self.v_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True ) self.dense = nn.Linear( self.num_heads * self.head_dim, self.hidden_size, bias=True ) self.rope = nn.RoPE( int(self.partial_rotary_factor * self.head_dim), traditional=False, base=self.rope_theta, ) def __call__(self, x, mask=None, cache=None): queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Extract some shapes B, L, D = queries.shape # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.num_heads, self.head_dim).transpose( 0, 2, 1, 3 ) keys = keys.reshape(B, L, self.num_key_value_heads, self.head_dim).transpose( 0, 2, 1, 3 ) values = values.reshape( B, L, self.num_key_value_heads, self.head_dim ).transpose(0, 2, 1, 3) def repeat(a): a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2) return a.reshape([B, self.num_heads, L, -1]) if self.repeats > 1: keys, values = map(repeat, (keys, values)) # Add RoPE to the queries and keys and combine them with the cache if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) queries = queries.astype(mx.float32) keys = keys.astype(mx.float32) # Finally perform the attention computation scale = math.sqrt(1 / queries.shape[-1]) scores = (queries * scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores = scores + mask scores = mx.softmax(scores, axis=-1).astype(values.dtype) values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.dense(values_hat), (keys, values) class PhiMLP(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) self.act = nn.GELU(approx="precise") def __call__(self, x) -> mx.array: return self.fc2(self.act(self.fc1(x))) class PhiDecoderLayer(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.self_attn = PhiAttention(config=config) self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = PhiMLP(config) def __call__(self, x, mask, cache): h = self.input_layernorm(x) attn_h, cache = self.self_attn(h, mask, cache) ff_h = self.mlp(h) return attn_h + ff_h + x, cache class PhiModel(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = [PhiDecoderLayer(config) for i in range(config.num_hidden_layers)] self.final_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def __call__(self, x, mask, cache): x = self.embed_tokens(x) if cache is None: cache = [None] * len(self.layers) for e, layer in enumerate(self.layers): x, cache[e] = layer(x, mask, cache[e]) return self.final_layernorm(x), cache class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.model_type = config.model_type self.model = PhiModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) def __call__( self, x: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> Tuple[mx.array, mx.array]: mask = None if x.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) y, cache = self.model(x, mask, cache) return self.lm_head(y), cache