import math from dataclasses import dataclass from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .cache import MambaCache @dataclass class ModelArgs(BaseModelArgs): model_type: str num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool chunk_size: int tie_word_embeddings: bool time_step_limit: Tuple[float, float] time_step_rank: Union[int, str] time_step_min: float time_step_max: float time_step_floor: float norm_before_gate: bool = True def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class DepthWiseConv1d(nn.Module): def __init__(self, channels, kernel_size, bias=True, padding=0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.padding = padding self.weight = mx.random.normal((channels, kernel_size, 1)) self.bias = mx.zeros((channels,)) if bias else None def __call__(self, x, cache=None): B, L, C = x.shape _, K, _ = self.weight.shape if cache is not None: x = mx.concatenate([cache, x], axis=1) else: x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)]) y = mx.conv_general(x, self.weight, groups=C) y = y + self.bias return y, x[:, -K + 1:, :] def segsum(x): return mx.cumsum(x, axis=-1).reshape(*x.shape[:-1], 1, x.shape[-1]) def ssd_forward_attn( x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, D: mx.array, dt_bias: mx.array, dt_min: float, dt_max: float, prev_state=None, ) -> Tuple[mx.array, mx.array]: b, l, h, dh = x.shape _, _, g, _ = B.shape # Process dt if dt_bias is not None: dt = dt + dt_bias.reshape(1, 1, -1) dt = nn.softplus(dt) dt = mx.clip(dt, a_min=dt_min, a_max=dt_max) # Reshape tensors B_reshaped = mx.swapaxes(mx.swapaxes(B, 1, 3), 1, 2) C_reshaped = mx.swapaxes(C, 1, 2) # Compute CB CB = C_reshaped @ B_reshaped CB = mx.repeat(CB, repeats=h // g, axis=1) # Compute decay terms dtA = dt * A.reshape(1, 1, -1) dtA = mx.swapaxes(dtA, 1, 2) decay = mx.exp(segsum(dtA)) # Create attention matrix surrogate_attention_matrix = mx.tril(CB * decay, 0) # Apply attention dtx = dt.reshape(b, l, h, 1) * x y = surrogate_attention_matrix @ dtx.swapaxes(1, 2) y = mx.swapaxes(y, 1, 2) # Compute next state decay_last = decay[:, :, -1, :].reshape(b, h, l).swapaxes(1, 2).reshape(b, l, h, 1) B_for_state = mx.repeat(B_reshaped, h // g, axis=1).swapaxes(2, 3) dtxdecay = dtx * decay_last dtxdecay = dtxdecay.swapaxes(1, 2).swapaxes(2, 3) # Calculate new state contribution new_state_contribution = dtxdecay @ B_for_state # Initialize or update state if prev_state is not None: decayed_prev_state = prev_state * decay[:, :, -1, :].reshape(b, h, 1, 1) next_state = decayed_prev_state + new_state_contribution else: next_state = new_state_contribution # Add skip connection if D is provided if D is not None: y += x * D.reshape(1, 1, h, 1) # Reshape output y = y.reshape(b, l, h * dh) return y, next_state def ssd(x, A, B, C, chunk_size, initial_states=None): """Structured State Space Duality (SSD) - the core of Mamba-2 Arguments x: (batch, seqlen, n_heads, d_head) A: (batch, seqlen, n_heads) B: (batch, seqlen, n_heads, d_state) C: (batch, seqlen, n_heads, d_state) Return (y, final_state) y: (batch, seqlen, n_heads, d_head) final_state: final state for next inference step """ # Verify sequence length is divisible by chunk_size b, seqlen, h, dh = x.shape assert seqlen % chunk_size == 0 # Rearrange into chunks num_chunks = seqlen // chunk_size x_chunks = x.reshape(b, num_chunks, chunk_size, h, dh) A_chunks = A.reshape(b, num_chunks, chunk_size, h) B_chunks = B.reshape(b, num_chunks, chunk_size, -1, B.shape[-1]) # Account for groups C_chunks = C.reshape(b, num_chunks, chunk_size, -1, C.shape[-1]) # Transpose A for correct cumsum operation A_chunks = mx.transpose(A_chunks, (0, 3, 1, 2)) # b h c l A_cumsum = mx.cumsum(A_chunks, axis=-1) # 1. Compute output for each intra-chunk (diagonal blocks) L = mx.exp(segsum(A_chunks)) # Handle the dimensions for einsum # "bclhn, bcshn, bhcls, bcshp -> bclhp" C_expanded = mx.expand_dims(C_chunks, axis=3) # b c l 1 h n B_expanded = mx.expand_dims(B_chunks, axis=2) # b c 1 s h n L_reshaped = mx.transpose(L, (0, 2, 3, 1, 4)) # b h c l s -> b c l h s x_reshaped = mx.transpose(x_chunks, (0, 1, 2, 3, 4)) # b c l h p # Perform the computation using manual broadcasting and reductions # This is a manual implementation of the einsum from PyTorch BC = mx.matmul(mx.transpose(C_expanded, (0, 1, 2, 4, 3)), mx.transpose(B_expanded, (0, 1, 3, 4, 2))) # b c l n n L_x = mx.matmul(mx.transpose(L_reshaped, (0, 1, 2, 4, 3)), mx.reshape(x_reshaped, (b, num_chunks, chunk_size, dh, 1))) # b c l s 1 Y_diag = mx.matmul(BC, L_x) # b c l h dh Y_diag = mx.reshape(Y_diag, (b, num_chunks, chunk_size, h, dh)) # 2. Compute state for each intra-chunk decay_states = mx.exp(A_cumsum[:, :, :, -1:] - A_cumsum) # Compute states using matrix multiplications (replacing einsum) # "bclhn, bhcl, bclhp -> bchpn" B_decay = mx.matmul(B_chunks, mx.reshape(decay_states, (b, h, num_chunks, chunk_size, 1))) states = mx.matmul(B_decay, mx.reshape(x_chunks, (b, num_chunks, chunk_size, h, dh, 1))) states = mx.reshape(states, (b, num_chunks, h, dh, -1)) # b c h p n # 3. Compute inter-chunk recurrence if initial_states is None: initial_states = mx.zeros((b, 1, h, dh, B.shape[-1])) states = mx.concatenate([initial_states, states], axis=1) # Create padded A_cumsum for decay calculation A_cumsum_last = A_cumsum[:, :, :, -1] padded_A_cumsum = mx.pad(A_cumsum_last, [(0, 0), (0, 0), (1, 0)]) decay_chunk = mx.exp(segsum(padded_A_cumsum)) # Compute new states (replacing einsum "bhzc, bchpn -> bzhpn") decay_chunk_expanded = mx.reshape(decay_chunk, (b, h, -1, num_chunks+1, 1, 1)) states_expanded = mx.reshape(states, (b, 1, num_chunks+1, h, dh, -1)) new_states = decay_chunk_expanded * states_expanded new_states = mx.sum(new_states, axis=2) states, final_state = new_states[:, :-1], new_states[:, -1] # 4. Compute state -> output conversion per chunk state_decay_out = mx.exp(A_cumsum) # Compute Y_off (replacing einsum "bclhn, bchpn, bhcl -> bclhp") state_decay_expanded = mx.reshape(state_decay_out, (b, h, num_chunks, chunk_size, 1)) states_reshaped = mx.reshape(states, (b, num_chunks, h, dh, -1)) C_states = mx.matmul(mx.transpose(C_chunks, (0, 1, 2, 4, 3)), mx.transpose(states_reshaped, (0, 1, 3, 2, 4))) Y_off = C_states * state_decay_expanded Y_off = mx.sum(Y_off, axis=-1) Y_off = mx.reshape(Y_off, (b, num_chunks, chunk_size, h, dh)) # Add diagonal and off-diagonal contributions Y = Y_diag + Y_off Y = mx.reshape(Y, (b, seqlen, h, dh)) return Y, final_state def ssd_inference_step(x, A, B, C, prev_state=None): """Simple inference step for Mamba-2 Works with: - x: (batch, seqlen, n_heads, d_head) - A: (n_heads,) - scalar values - B: (batch, seqlen, n_groups, d_state) - C: (batch, seqlen, n_groups, d_state) """ # Extract dimensions b, seqlen, h, dh = x.shape _, _, g, d_state = B.shape # Compute decay factor dA = mx.exp(A) # (n_heads,) # Output container outputs = [] # Final state to return final_state = prev_state # For each position in the sequence for t in range(seqlen): # Get current values xt = x[:, t] # (batch, n_heads, d_head) Bt = B[:, t] # (batch, n_groups, d_state) Ct = C[:, t] # (batch, n_groups, d_state) # Handle groups vs heads if they differ if g < h: repeat_factor = h // g Bt = mx.repeat(Bt, repeat_factor, axis=1) # (batch, n_heads, d_state) Ct = mx.repeat(Ct, repeat_factor, axis=1) # (batch, n_heads, d_state) # Reshape for matrix operations xt = mx.reshape(xt, (b, h, dh, 1)) Bt = mx.reshape(Bt, (b, h, 1, d_state)) # Compute B·x dBx = mx.matmul(xt, Bt) # (batch, n_heads, d_head, d_state) # Update state if final_state is not None: dA_expanded = mx.reshape(dA, (1, h, 1, 1)) new_state = final_state * dA_expanded + dBx else: new_state = dBx # Compute output Ct = mx.reshape(Ct, (b, h, d_state, 1)) yt = mx.matmul(new_state, Ct) # (batch, n_heads, d_head, 1) yt = mx.reshape(yt, (b, h, dh)) # Add to outputs outputs.append(mx.expand_dims(yt, 1)) # Update state for next position final_state = new_state # Combine all outputs y = mx.concatenate(outputs, axis=1) return y, final_state class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.d_model = args.hidden_size self.d_state = args.state_size self.d_conv = args.conv_kernel self.expand = args.expand self.d_inner = int(self.expand * self.d_model) self.n_groups = args.n_groups self.n_heads = args.num_heads self.d_head = self.d_inner // self.n_heads self.chunk_size = args.chunk_size d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias) self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range self.D = mx.random.normal((self.n_heads,)) * args.initializer_range self.conv1d = DepthWiseConv1d( channels=self.d_inner + 2 * self.n_groups * self.d_state, kernel_size=self.d_conv, bias=args.use_conv_bias, padding=self.d_conv-1 ) self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias) def __call__(self, u: mx.array, cache=None): batch_size, seq_len, _ = u.shape if cache is None: cache = [None, None] else: conv_state, ssm_state = cache zxBCdt = self.in_proj(u) # Split the projection into components z, xBC, dt = mx.split( zxBCdt, [self.d_inner, 2*self.d_inner + 2*self.n_groups*self.d_state], axis=-1 ) # Apply convolution and gating xBC, conv_state = self.conv1d(xBC, conv_state) xBC = xBC * mx.sigmoid(xBC) xBC = xBC[:, :seq_len, :] # Split into the various components x, B, C = mx.split( xBC, [self.d_inner, self.d_inner + self.d_state*self.n_groups], axis=-1 ) # Reshape for SSM computation x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head)) B = mx.reshape(B, (batch_size, seq_len, self.n_groups, -1)) C = mx.reshape(C, (batch_size, seq_len, self.n_groups, -1)) # Process dt - similar to your ssd_forward_attn function dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads)) dt = dt + self.dt_bias.reshape(1, 1, -1) # Apply bias dt = nn.softplus(dt) # Ensure positive time steps dt = mx.clip(dt, self.args.time_step_min, self.args.time_step_max) # For inference, we use ssd_forward_attn which you already know works y, next_ssm_state = ssd_forward_attn( x=x, dt=dt, A=self.A_log, # Use A_log directly, the function will process it B=B, C=C, D=self.D, dt_bias=None, # We already applied dt_bias above dt_min=self.args.time_step_min, dt_max=self.args.time_step_max, prev_state=ssm_state ) # Reshape output y = mx.reshape(y, (batch_size, seq_len, self.d_inner)) # Apply normalization and gating if self.args.norm_before_gate: y = self.norm(y) y = y * nn.silu(z) else: y = y * nn.silu(z) y = self.norm(y) y = self.out_proj(y) cache[0] = conv_state cache[1] = next_ssm_state return y class ResidualBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.residual_in_fp32 = args.residual_in_fp32 self.mixer = Mamba2Block(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): if self.residual_in_fp32: x = x.astype(mx.float32) normed = self.norm(x) output = self.mixer(normed, cache) return output + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, x: mx.array, cache): x = self.embeddings(x) if cache is None: cache = [None] * len(self.layers) hidden = x for layer, c in zip(self.layers, cache): hidden = layer(hidden, c) return self.norm_f(hidden) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): hidden = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(hidden) else: logits = self.lm_head(hidden) return logits def make_cache(self): return [MambaCache() for _ in range(len(self.layers))] @property def layers(self): return self.backbone.layers