# Copyright © 2024 Apple Inc. import math from dataclasses import dataclass, field from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs # python -m mlx_lm.generate --model rokyang/mamba2-130m-hf --prompt "hello how are you." @dataclass class ModelArgs(BaseModelArgs): num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool time_step_min: float time_step_max: float time_step_floor: float rescale_prenorm_residual: bool use_cache: bool rms_norm: bool chunk_size: int tie_word_embeddings: bool time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) time_step_rank: Union[int, str] = "auto" model_type: str = "mamba2" def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class Mamba2Cache: def __init__(self): self.cache = [None, None] def __setitem__(self, idx, value): self.cache[idx] = value def __getitem__(self, idx): return self.cache[idx] @property def state(self): return self.cache class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states class DepthWiseConv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.groups = groups if groups is not None else in_channels # Ensure in_channels and out_channels are the same for depthwise conv assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution" # Ensure groups is equal to in_channels for depthwise conv assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution" # Initialize weight with shape (out_channels, kernel_size, 1) self.weight = mx.random.normal((out_channels, kernel_size, 1)) self.bias = mx.zeros((out_channels,)) if bias else None def __call__(self, x, cache=None): B, L, C = x.shape _, K, _ = self.weight.shape if cache is not None: x = mx.concatenate([cache, x], axis=1) else: x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)]) y = mx.conv_general(x, self.weight, groups=self.groups) if self.bias is not None: y = y + self.bias return y, x[:, -K + 1 :, :] class Mamba2Mixer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.intermediate_size = args.intermediate_size self.time_step_rank = args.time_step_rank self.conv_kernel_size = args.conv_kernel self.hidden_size = args.hidden_size self.state_size = args.state_size self.num_heads = args.num_heads self.head_dim = args.hidden_size // args.num_heads self.n_groups = args.n_groups self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size self.conv1d = DepthWiseConv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=args.use_conv_bias, kernel_size=args.conv_kernel, groups=self.conv_dim, padding=args.conv_kernel - 1 ) projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=args.use_bias ) self.dt_bias = mx.ones((self.num_heads,)) self.A_log = mx.log(mx.arange(1, self.num_heads + 1)) self.D = mx.ones((self.num_heads,)) self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias) def ssm_step(self, x, state, dt_proj): print(f"ssm_step input shapes - x: {x.shape}, dt_proj: {dt_proj.shape}") A = -mx.exp(self.A_log) D = self.D delta = nn.softplus(dt_proj + self.dt_bias) B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1) print(f"ssm_step split shapes - B: {B.shape}, C: {C.shape}") B = B.reshape(-1, self.n_groups, self.state_size) C = C.reshape(-1, self.n_groups, self.state_size) print(f"After reshape - B: {B.shape}, C: {C.shape}") delta = delta.reshape(-1, self.num_heads, 1) A = A.reshape(1, self.num_heads, 1) if state is None: new_state = delta * B else: new_state = delta * (B + state * mx.exp(delta * A)) print(f"Before final computation - new_state: {new_state.shape}, C: {C.shape}") y = mx.sum(new_state * C, axis=-1) y = y + D * x[:, :self.num_heads] print(f"ssm_step output shape - y: {y.shape}") return y, new_state def __call__(self, x, cache): B, T, D = x.shape print(f"__call__ input shape - x: {x.shape}") if cache is None: cache = [None, None] outputs = [] for t in range(T): xt = x[:, t, :] xz = self.in_proj(xt) print(f"After in_proj shape - xz: {xz.shape}") x_t, z_t, dt_proj = mx.split( xz, indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size], axis=-1 ) print(f"After split shapes - x_t: {x_t.shape}, z_t: {z_t.shape}, dt_proj: {dt_proj.shape}") conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0]) x_t = conv_out.squeeze(1) x_t = nn.silu(x_t) print(f"Before ssm_step shape - x_t: {x_t.shape}") y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj) z_t = nn.silu(z_t) print(f"After ssm_step shapes - y_t: {y_t.shape}, z_t: {z_t.shape}") # Element-wise multiplication output_t = y_t[:, :, None] * z_t[:, None, :] print(f"After multiplication shape - output_t: {output_t.shape}") # Sum across the second dimension to match the intermediate_size output_t = output_t.sum(axis=1) print(f"After sum shape - output_t: {output_t.shape}") output_t = self.out_proj(output_t) print(f"After out_proj shape - output_t: {output_t.shape}") outputs.append(output_t) output = mx.stack(outputs, axis=1) print(f"Final output shape: {output.shape}") return output class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.mixer = Mamba2Mixer(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): return self.mixer(self.norm(x), cache) + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [Mamba2Block(args) for idx in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__( self, inputs: mx.array, cache=None ): hidden_states = self.embeddings(inputs) if cache is None: cache = Mamba2Cache(len(self.layers)) for i, layer in enumerate(self.layers): hidden_states = layer(hidden_states, cache[i]) hidden_states = self.norm_f(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): B, T = inputs.shape x = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(x) else: logits = self.lm_head(x) return logits def sanitize(self, weights): for k, v in weights.items(): if "conv1d.weight" in k and v.ndim == 3: weights[k] = v.moveaxis(2, 1) return weights def make_cache(self, batch_size: int = 1): return [Mamba2Cache() for _ in range(len(self.layers))] @property def layers(self): return self.backbone.layers