import math from dataclasses import dataclass from typing import Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): n_positions: int = 2048 vocab_size: int = 51200 n_embd: int = 2560 n_head: int = 32 n_layer: int = 32 rotary_dim: int = 32 class LayerNorm(nn.LayerNorm): def __call__(self, x: mx.array) -> mx.array: return super().__call__(x.astype(mx.float32)).astype(x.dtype) class RoPEAttention(nn.Module): def __init__(self, dims: int, n_head: int, rotary_dim: int): super().__init__() self.n_head = n_head self.q_proj = nn.Linear(dims, dims) self.k_proj = nn.Linear(dims, dims) self.v_proj = nn.Linear(dims, dims) self.dense = nn.Linear(dims, dims) self.rope = nn.RoPE(rotary_dim, traditional=False) def __call__(self, x, mask=None, cache=None): queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Extract some shapes n_head = self.n_head B, L, D = queries.shape # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3) # Add RoPE to the queries and keys and combine them with the cache if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) queries = queries.astype(mx.float32) keys = keys.astype(mx.float32) # Finally perform the attention computation scale = math.sqrt(1 / queries.shape[-1]) scores = (queries * scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores = scores + mask scores = mx.softmax(scores, axis=-1).astype(values.dtype) values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.dense(values_hat), (keys, values) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.fc1 = nn.Linear(dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, dim) self.act = nn.GELU(approx="precise") def __call__(self, x) -> mx.array: return self.fc2(self.act(self.fc1(x))) class ParallelBlock(nn.Module): def __init__(self, config: ModelArgs): super().__init__() dims = config.n_embd mlp_dims = dims * 4 self.self_attn = RoPEAttention(dims, config.n_head, config.rotary_dim) self.input_layernorm = LayerNorm(dims) self.mlp = MLP(dims, mlp_dims) def __call__(self, x, mask, cache): h = self.input_layernorm(x) attn_h, cache = self.self_attn(h, mask, cache) ff_h = self.mlp(h) return attn_h + ff_h + x, cache class Transformer(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd) self.layers = [ParallelBlock(config) for i in range(config.n_layer)] self.final_layernorm = LayerNorm(config.n_embd) def __call__(self, x, mask, cache): x = self.embed_tokens(x) if cache is None: cache = [None] * len(self.layers) for e, layer in enumerate(self.layers): x, cache[e] = layer(x, mask, cache[e]) return self.final_layernorm(x), cache class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.model = Transformer(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size) def __call__( self, x: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> Tuple[mx.array, mx.array]: mask = None if x.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) y, cache = self.model(x, mask, cache) return self.lm_head(y), cache