import json from pathlib import Path from typing import Dict, List, Union from transformers import PreTrainedTokenizer class Dataset: """ Light-weight wrapper to hold a dataset. """ def __init__(self, data: List[Dict[str, str]], text_key: str = "text"): self._text_key = text_key self._data = data def __getitem__(self, idx: int): return self._data[idx][self._text_key] def __len__(self): if self._data is None: return 0 return len(self._data) class ChatDataset(Dataset): """ A dataset for chat data in the format of {"messages": [...]} https://platform.openai.com/docs/guides/fine-tuning/example-format """ def __init__( self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer, chat_key: str = "messages", ): super().__init__(data) self._tokenizer = tokenizer self._chat_key = chat_key def __getitem__(self, idx: int): messages = self._data[idx][self._chat_key] text = self._tokenizer.apply_chat_template( messages, tools=self._data[idx].get("tools", None), tokenize=False, add_generation_prompt=True, ) return text class CompletionsDataset(Dataset): """ A dataset for prompt-completion data in the format of {"prompt": ..., "completion": ...} or using user-provided keys for prompt and completion values https://platform.openai.com/docs/guides/fine-tuning/example-format """ def __init__( self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer, prompt_key: str = "prompt", completion_key: str = "completion", ): super().__init__(data) self._tokenizer = tokenizer self._prompt_key = prompt_key self._completion_key = completion_key def __getitem__(self, idx: int): data = self._data[idx] text = self._tokenizer.apply_chat_template( [ {"role": "user", "content": data[self._prompt_key]}, {"role": "assistant", "content": data[self._completion_key]}, ], tokenize=False, add_generation_prompt=True, ) return text class CompletionsDatasetCollection: def __init__(self, data: List[Union[ChatDataset, CompletionsDataset]]): self.collection = data def __getitem__(self, idx: int): iteration = iter(self.collection) item = next(iteration) curr_idx = idx while True: try: if (curr_idx + 1) < len(item): return item[curr_idx] else: curr_idx -= len(item) item = next(iteration) except StopIteration: raise IndexError(idx) def __len__(self): return sum(map(len, self.collection)) def create_dataset(data, tokenizer: PreTrainedTokenizer = None): sample = data[0] if "messages" in sample: return ChatDataset(data, tokenizer) elif "prompt" in sample and "completion" in sample: return CompletionsDataset(data, tokenizer) elif "text" in sample: return Dataset(data) else: raise ValueError( "Unsupported data format, check the supported formats here:\n" "https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md#data." ) def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer): def load_subset(path): if not path.exists(): return [] with open(path, "r") as fid: data = [json.loads(l) for l in fid] return create_dataset(data, tokenizer) names = ("train", "valid", "test") train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names] return train, valid, test def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer): from datasets import exceptions, load_dataset try: dataset = load_dataset(data_id) names = ("train", "valid", "test") train, valid, test = [ create_dataset(dataset[n], tokenizer) if n in dataset.keys() else [] for n in names ] except exceptions.DatasetNotFoundError: raise ValueError(f"Not found Hugging Face dataset: {data_id} .") return train, valid, test def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer): import datasets def create_hf_dataset( dataset_name: Union[None, str], text_feature: Union[None, str], prompt_feature: Union[None, str], completion_feature: Union[None, str], chat_feature: Union[None, str], split: str = None, ): ds = datasets.load_dataset( dataset_name, split=split, **hf_args.get("config", {}), ) if prompt_feature and completion_feature: return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature) elif chat_feature: return ChatDataset(ds, tokenizer, chat_key=chat_feature) elif text_feature: return Dataset(ds, text_key=text_feature) else: raise ValueError( "Specify either a prompt and completion feature or a text " "feature for the Hugging Face dataset." ) def get_hf_custom_features(hf_args): return ( hf_args.get("text_feature"), hf_args.get("prompt_feature"), hf_args.get("completion_feature"), hf_args.get("chat_feature"), ) def get_train_and_valid_splits(hf_args, ds_name): train_split = hf_args.get("train_split", "train[:80%]") valid_split = hf_args.get("valid_split", "train[-10%:]") text_f, prompt_f, completion_f, chat_f = get_hf_custom_features(hf_args) train = create_hf_dataset( dataset_name=ds_name, text_feature=text_f, prompt_feature=prompt_f, completion_feature=completion_f, chat_feature=chat_f, split=train_split, ) valid = create_hf_dataset( dataset_name=ds_name, text_feature=text_f, prompt_feature=prompt_f, completion_feature=completion_f, chat_feature=chat_f, split=valid_split, ) return train, valid if args.hf_datasets: dataset_collection = args.hf_datasets train_collection = [] valid_collection = [] test_collection = [] for ds in dataset_collection: hf_args = ds["hf_dataset"] dataset_name = hf_args["name"] print(f"Loading Hugging Face dataset {dataset_name}.") text_feature, prompt_feature, completion_feature, chat_f = ( get_hf_custom_features(hf_args) ) if args.train: train, valid = get_train_and_valid_splits(hf_args, dataset_name) else: train, valid = [], [] if args.test: test = create_hf_dataset( dataset_name=dataset_name, text_feature=text_feature, prompt_feature=prompt_feature, completion_feature=completion_feature, chat_feature=chat_f, split=hf_args.get("test_split"), ) else: test = [] train_collection.append(train) valid_collection.append(valid) test_collection.append(test) return ( CompletionsDatasetCollection(train_collection), CompletionsDatasetCollection(valid_collection), CompletionsDatasetCollection(test_collection), ) else: hf_args = args.hf_dataset dataset_name = hf_args["name"] print(f"Loading Hugging Face dataset {dataset_name}.") text_feature, prompt_feature, completion_feature, chat_feature = ( get_hf_custom_features(hf_args) ) if args.train: train, valid = get_train_and_valid_splits(hf_args, dataset_name) else: train, valid = [], [] if args.test: test = create_hf_dataset( dataset_name, text_feature, prompt_feature, completion_feature, chat_feature, split=hf_args.get("test_split"), ) else: test = [] return train, valid, test def load_dataset(args, tokenizer: PreTrainedTokenizer): if getattr(args, "hf_dataset", None) is not None or getattr(args, "hf_datasets"): train, valid, test = load_custom_hf_dataset(args, tokenizer) else: data_path = Path(args.data) if data_path.exists(): train, valid, test = load_local_dataset(data_path, tokenizer) else: print(f"Loading Hugging Face dataset {args.data}.") train, valid, test = load_hf_dataset(args.data, tokenizer) if args.train and len(train) == 0: raise ValueError( "Training set not found or empty. Must provide training set for fine-tuning." ) if args.train and len(valid) == 0: raise ValueError( "Validation set not found or empty. Must provide validation set for fine-tuning." ) if args.test and len(test) == 0: raise ValueError( "Test set not found or empty. Must provide test set for evaluation." ) return train, valid, test