""" Implementation of ResNets for CIFAR-10 as per the original paper [https://arxiv.org/abs/1512.03385]. Configurations include ResNet-20, ResNet-32, ResNet-44, ResNet-56, ResNet-110, ResNet-1202. There's no BatchNorm is mlx==0.0.4, using LayerNorm instead. """ from typing import Any import mlx.core as mx import mlx.nn as nn from mlx.utils import tree_flatten __all__ = [ "ResNet", "resnet20", "resnet32", "resnet44", "resnet56", "resnet110", "resnet1202", ] class ShortcutA(nn.Module): def __init__(self, dims): super().__init__() self.dims = dims def __call__(self, x): return mx.pad( x[:, ::2, ::2, :], pad_width=[(0, 0), (0, 0), (0, 0), (self.dims // 4, self.dims // 4)], ) class Block(nn.Module): """ Implements a ResNet block with two convolutional layers and a skip connection. As per the paper, CIFAR-10 uses Shortcut type-A skip connections. (See paper for details) """ def __init__(self, in_dims, dims, stride=1): super().__init__() self.conv1 = nn.Conv2d( in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn1 = nn.LayerNorm(dims) self.conv2 = nn.Conv2d( dims, dims, kernel_size=3, stride=1, padding=1, bias=False ) self.bn2 = nn.LayerNorm(dims) if stride != 1: self.shortcut = ShortcutA(dims) else: self.shortcut = None def __call__(self, x): out = nn.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) if self.shortcut is None: out += x else: out += self.shortcut(x) out = nn.relu(out) return out class ResNet(nn.Module): """ Creates a ResNet model for CIFAR-10, as specified in the original paper. """ def __init__(self, block, num_blocks, num_classes=10): super().__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.LayerNorm(16) self.layer1 = self._make_layer(block, 16, 16, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 16, 32, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 32, 64, num_blocks[2], stride=2) self.linear = nn.Linear(64, num_classes) def _make_layer(self, block, in_dims, dims, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(in_dims, dims, stride)) in_dims = dims return nn.Sequential(*layers) def num_params(self): nparams = sum(x.size for k, x in tree_flatten(self.parameters())) return nparams def __call__(self, x): x = nn.relu(self.bn1(self.conv1(x))) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = mx.mean(x, axis=[1, 2]).reshape(x.shape[0], -1) x = self.linear(x) return x def resnet20(**kwargs): return ResNet(Block, [3, 3, 3], **kwargs) def resnet32(**kwargs): return ResNet(Block, [5, 5, 5], **kwargs) def resnet44(**kwargs): return ResNet(Block, [7, 7, 7], **kwargs) def resnet56(**kwargs): return ResNet(Block, [9, 9, 9], **kwargs) def resnet110(**kwargs): return ResNet(Block, [18, 18, 18], **kwargs) def resnet1202(**kwargs): return ResNet(Block, [200, 200, 200], **kwargs)