import argparse import time import mlx.core as mx import mlx.nn as nn import mlx.optimizers as optim import resnet from dataset import get_cifar10 parser = argparse.ArgumentParser(add_help=True) parser.add_argument( "--arch", type=str, default="resnet20", choices=[f"resnet{d}" for d in [20, 32, 44, 56, 110, 1202]], help="model architecture", ) parser.add_argument("--batch_size", type=int, default=256, help="batch size") parser.add_argument("--epochs", type=int, default=30, help="number of epochs") parser.add_argument("--lr", type=float, default=1e-3, help="learning rate") parser.add_argument("--seed", type=int, default=0, help="random seed") parser.add_argument("--cpu", action="store_true", help="use cpu only") def eval_fn(model, inp, tgt): return mx.mean(mx.argmax(model(inp), axis=1) == tgt) def train_epoch(model, train_iter, optimizer, epoch): def train_step(model, inp, tgt): output = model(inp) loss = mx.mean(nn.losses.cross_entropy(output, tgt)) acc = mx.mean(mx.argmax(output, axis=1) == tgt) return loss, acc train_step_fn = nn.value_and_grad(model, train_step) losses = [] accs = [] samples_per_sec = [] for batch_counter, batch in enumerate(train_iter): x = mx.array(batch["image"]) y = mx.array(batch["label"]) tic = time.perf_counter() (loss, acc), grads = train_step_fn(model, x, y) optimizer.update(model, grads) mx.eval(model.parameters(), optimizer.state) toc = time.perf_counter() loss = loss.item() acc = acc.item() losses.append(loss) accs.append(acc) throughput = x.shape[0] / (toc - tic) samples_per_sec.append(throughput) if batch_counter % 10 == 0: print( " | ".join( ( f"Epoch {epoch:02d} [{batch_counter:03d}]", f"Train loss {loss:.3f}", f"Train acc {acc:.3f}", f"Throughput: {throughput:.2f} images/second", ) ) ) mean_tr_loss = mx.mean(mx.array(losses)) mean_tr_acc = mx.mean(mx.array(accs)) samples_per_sec = mx.mean(mx.array(samples_per_sec)) return mean_tr_loss, mean_tr_acc, samples_per_sec def test_epoch(model, test_iter, epoch): accs = [] for batch_counter, batch in enumerate(test_iter): x = mx.array(batch["image"]) y = mx.array(batch["label"]) acc = eval_fn(model, x, y) acc_value = acc.item() accs.append(acc_value) mean_acc = mx.mean(mx.array(accs)) return mean_acc def main(args): mx.random.seed(args.seed) model = getattr(resnet, args.arch)() print("Number of params: {:0.04f} M".format(model.num_params() / 1e6)) optimizer = optim.Adam(learning_rate=args.lr) train_data, test_data = get_cifar10(args.batch_size) for epoch in range(args.epochs): tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch) print( " | ".join( ( f"Epoch: {epoch}", f"avg. Train loss {tr_loss.item():.3f}", f"avg. Train acc {tr_acc.item():.3f}", f"Throughput: {throughput.item():.2f} images/sec", ) ) ) test_acc = test_epoch(model, test_data, epoch) print(f"Epoch: {epoch} | Test acc {test_acc.item():.3f}") train_data.reset() test_data.reset() if __name__ == "__main__": args = parser.parse_args() if args.cpu: mx.set_default_device(mx.cpu) main(args)