import math from dataclasses import dataclass, field from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .cache import MambaCache @dataclass class ModelArgs(BaseModelArgs): num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool time_step_min: float time_step_max: float time_step_floor: float rescale_prenorm_residual: bool rms_norm: bool chunk_size: int tie_word_embeddings: bool use_cache: bool = True time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) time_step_rank: Union[int, str] = "auto" model_type: str = "mamba2" def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states def silu(x): return x * mx.sigmoid(x) def ssd(x, A, B, C, chunk_size): # Replace einsum operations with explicit reshape and matrix multiply batch, seqlen, nheads, dim = x.shape B = mx.expand_dims(B, axis=2) C = mx.expand_dims(C, axis=2) state = mx.zeros((batch, nheads, dim, B.shape[-1])) outputs = [] for i in range(0, seqlen, chunk_size): chunk = slice(i, min(i + chunk_size, seqlen)) dA = mx.exp(mx.expand_dims(A[chunk], axis=0)) # Replace einsum with explicit operations x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim] x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size] B_chunk = B[:, chunk] # [batch, chunk_size, state_size] dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size] state = state * mx.expand_dims(dA, axis=-1) + dBx # Replace einsum with explicit operations C_chunk = C[:, chunk] # [batch, chunk_size, state_size] y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size] y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim] outputs.append(y) return mx.concatenate(outputs, axis=1), state # class DepthWiseConv1d(nn.Module): # def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0): # super().__init__() # self.in_channels = in_channels # self.out_channels = out_channels # self.kernel_size = kernel_size # self.padding = padding # self.groups = groups if groups is not None else in_channels # assert in_channels == out_channels, "In and out channels must be same for depthwise convolution" # assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution" # self.weight = mx.random.normal((in_channels, 1, kernel_size)) # self.bias = mx.zeros((out_channels,)) if bias else None # def __call__(self, x: mx.array, cache=None) -> mx.array: # B, L, C = x.shape # K = self.kernel_size # assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}" # if cache is not None: # if isinstance(cache.conv_states[0], type(None)): # cache.conv_states[0] = mx.zeros((B, K-1, C)) # x = mx.concatenate([cache.conv_states[0], x], axis=1) # outputs = [] # for c in range(C): # # Input prep debug # x_c = x[:, :, c] # x_c = mx.expand_dims(x_c, axis=1) # # Weight prep debug # w_c = self.weight[c] # if w_c.ndim == 2: # w_c = mx.expand_dims(w_c, axis=0) # elif w_c.ndim == 1: # w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0) # y_c = mx.conv_general( # x_c, # w_c, # stride=1, # padding=0 # ) # if self.bias is not None: # y_c = y_c + self.bias[c] # y_c = mx.squeeze(y_c, axis=1) # outputs.append(y_c) # # Output statistics # y = mx.stack(outputs, axis=-1) # # Cache update debug # if cache is not None: # cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x # return y # class Mamba2Block(nn.Module): # def __init__(self, args: ModelArgs): # super().__init__() # self.args = args # d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads # self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias) # conv_dim = args.intermediate_size + 2 * args.state_size # self.conv1d = DepthWiseConv1d( # in_channels=conv_dim, # out_channels=conv_dim, # kernel_size=args.conv_kernel, # groups=conv_dim, # bias=args.use_conv_bias, # padding=args.conv_kernel - 1 # ) # self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range # self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range # self.D = mx.random.normal((args.num_heads,)) * args.initializer_range # self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon) # self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias) # if args.rescale_prenorm_residual: # layer_scale = math.sqrt(1.0 / args.num_hidden_layers) # self.out_proj.weight = self.out_proj.weight * layer_scale # def __call__(self, u: mx.array, cache=None): # # Expect input to be shape [batch_size, 1, dim] # batch_size, seq_len, dimension = u.shape # assert seq_len == 1, "Input should be a single token" # # Initialize cache if needed # if cache.conv_states[0] is None: # conv_dim = self.args.intermediate_size + 2 * self.args.state_size # cache.conv_states[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim)) # if cache.ssm_states[0] is None: # cache.ssm_states[0] = mx.zeros(( # batch_size, # self.args.num_heads, # self.args.head_dim, # self.args.state_size # )) # # Project input # zxbcdt = self.in_proj(u) # # Split projections # n_heads = self.args.num_heads # z = zxbcdt[:, :, :self.args.intermediate_size] # xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size] # dt = zxbcdt[:, :, -(n_heads):] # # Time steps # dt = mx.reshape(dt, (batch_size, n_heads)) # dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max) # dt = mx.maximum(dt, self.args.time_step_floor) # # Convolution # xBC = self.conv1d(xBC, cache=cache) # xBC = silu(xBC) # # Split states # x = xBC[:, :, :self.args.intermediate_size] # B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size] # C = xBC[:, :, -self.args.state_size:] # # Reshape for SSM # x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim)) # x = mx.squeeze(x, axis=1) # B = mx.reshape(B, (batch_size, 1, self.args.state_size)) # B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size)) # B = mx.expand_dims(B, axis=2) # C = mx.reshape(C, (batch_size, 1, self.args.state_size)) # C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size)) # C = mx.expand_dims(C, axis=3) # # SSM updates # A = -mx.exp(self.A_log) # dA = mx.exp(dt * mx.expand_dims(A, 0)) # dA = mx.expand_dims(mx.expand_dims(dA, -1), -1) # # Update state # x = mx.expand_dims(x, axis=3) # dBx = mx.matmul(x, B) # cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx # # Compute output # y = mx.matmul(cache.ssm_states[0], C) # y = mx.squeeze(y, axis=-1) # y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1) # y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim)) # y = self.norm(y + z) # return self.out_proj(y) class DepthWiseConv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.groups = groups if groups is not None else in_channels assert in_channels == out_channels, "In and out channels must be same for depthwise convolution" assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution" self.weight = mx.random.normal((in_channels, 1, kernel_size)) self.bias = mx.zeros((out_channels,)) if bias else None def __call__(self, x: mx.array, cache=None) -> mx.array: B, L, C = x.shape K = self.kernel_size assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}" if cache is not None: # Access conv_state directly from cache[0] if cache[0] is None: cache[0] = mx.zeros((B, K-1, C)) x = mx.concatenate([cache[0], x], axis=1) outputs = [] for c in range(C): x_c = x[:, :, c] x_c = mx.expand_dims(x_c, axis=1) w_c = self.weight[c] if w_c.ndim == 2: w_c = mx.expand_dims(w_c, axis=0) elif w_c.ndim == 1: w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0) y_c = mx.conv_general( x_c, w_c, stride=1, padding=0 ) if self.bias is not None: y_c = y_c + self.bias[c] y_c = mx.squeeze(y_c, axis=1) outputs.append(y_c) y = mx.stack(outputs, axis=-1) # Update cache directly using cache[0] if cache is not None: cache[0] = x[:, -K+1:, :] if x.shape[1] >= K else x return y class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias) conv_dim = args.intermediate_size + 2 * args.state_size self.conv1d = DepthWiseConv1d( in_channels=conv_dim, out_channels=conv_dim, kernel_size=args.conv_kernel, groups=conv_dim, bias=args.use_conv_bias, padding=args.conv_kernel - 1 ) self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range self.D = mx.random.normal((args.num_heads,)) * args.initializer_range self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias) if args.rescale_prenorm_residual: layer_scale = math.sqrt(1.0 / args.num_hidden_layers) self.out_proj.weight = self.out_proj.weight * layer_scale def __call__(self, u: mx.array, cache=None): batch_size, seq_len, dimension = u.shape assert seq_len == 1, "Input should be a single token" # Initialize cache states directly using indices if cache[0] is None: # conv state conv_dim = self.args.intermediate_size + 2 * self.args.state_size cache[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim)) if cache[1] is None: # ssm state cache[1] = mx.zeros(( batch_size, self.args.num_heads, self.args.head_dim, self.args.state_size )) zxbcdt = self.in_proj(u) n_heads = self.args.num_heads z = zxbcdt[:, :, :self.args.intermediate_size] xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size] dt = zxbcdt[:, :, -(n_heads):] dt = mx.reshape(dt, (batch_size, n_heads)) dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max) dt = mx.maximum(dt, self.args.time_step_floor) xBC = self.conv1d(xBC, cache=cache) xBC = silu(xBC) x = xBC[:, :, :self.args.intermediate_size] B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size] C = xBC[:, :, -self.args.state_size:] x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim)) x = mx.squeeze(x, axis=1) B = mx.reshape(B, (batch_size, 1, self.args.state_size)) B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size)) B = mx.expand_dims(B, axis=2) C = mx.reshape(C, (batch_size, 1, self.args.state_size)) C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size)) C = mx.expand_dims(C, axis=3) A = -mx.exp(self.A_log) dA = mx.exp(dt * mx.expand_dims(A, 0)) dA = mx.expand_dims(mx.expand_dims(dA, -1), -1) x = mx.expand_dims(x, axis=3) dBx = mx.matmul(x, B) # Update ssm state directly using cache[1] cache[1] = cache[1] * dA + dBx y = mx.matmul(cache[1], C) y = mx.squeeze(y, axis=-1) y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1) y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim)) y = self.norm(y + z) return self.out_proj(y) class ResidualBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.residual_in_fp32 = args.residual_in_fp32 self.mixer = Mamba2Block(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): if self.residual_in_fp32: x = x.astype(mx.float32) normed = self.norm(x) output = self.mixer(normed, cache) return output + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, x: mx.array, cache): x = self.embeddings(x) if cache is None: cache = [None] * len(self.layers) hidden = x for layer, c in zip(self.layers, cache): hidden = layer(hidden, c) return self.norm_f(hidden) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): hidden = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(hidden) else: logits = self.lm_head(hidden) return logits def make_cache(self): return [MambaCache() for _ in range(len(self.layers))] @property def layers(self): return self.backbone.layers