# Copyright © 2025 Apple Inc. from dataclasses import dataclass from typing import Any, Optional import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask from .cache import KVCache, RotatingKVCache @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int = 1152 num_hidden_layers: int = 26 intermediate_size: int = 6912 num_attention_heads: int = 4 head_dim: int = 256 rms_norm_eps: float = 1.0e-6 vocab_size: int = 262144 num_key_value_heads: int = 1 rope_global_base_freq: float = 1_000_000.0 rope_local_base_freq: float = 10_000.0 rope_traditional: bool = False query_pre_attn_scalar: float = 256 sliding_window: int = 512 sliding_window_pattern: int = 6 class Attention(nn.Module): def __init__(self, args: ModelArgs, layer_idx: int): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads self.repeats = n_heads // n_kv_heads self.head_dim = head_dim = args.head_dim self.layer_idx = layer_idx self.scale = args.query_pre_attn_scalar**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) self.q_norm = RMSNorm(dims=head_dim, eps=args.rms_norm_eps) self.k_norm = RMSNorm(dims=head_dim, eps=args.rms_norm_eps) self.is_sliding = (layer_idx + 1) % args.sliding_window_pattern != 0 self.rope = nn.RoPE( head_dim, traditional=args.rope_traditional, base=( args.rope_local_base_freq if self.is_sliding else args.rope_global_base_freq ), ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: B, L, _ = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) queries = self.q_norm(queries) keys = self.k_norm(keys) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) # Sliding window if mask is not None and mask.shape[-1] != keys.shape[-2]: mask = mask[..., -keys.shape[-2] :] output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class RMSNorm(nn.Module): def __init__(self, dims: int, eps: float = 1e-5): super().__init__() self.weight = mx.ones((dims,)) self.eps = eps def __call__(self, x): return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) def __call__(self, x) -> mx.array: return self.down_proj(nn.gelu_approx(self.gate_proj(x)) * self.up_proj(x)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs, layer_idx: int): super().__init__() self.num_attention_heads = args.num_attention_heads self.hidden_size = args.hidden_size self.self_attn = Attention(args, layer_idx) self.mlp = MLP(args.hidden_size, args.intermediate_size) self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.pre_feedforward_layernorm = RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) self.post_feedforward_layernorm = RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x), mask, cache) h = x + self.post_attention_layernorm(r) r = self.mlp(self.pre_feedforward_layernorm(h)) out = h + self.post_feedforward_layernorm(r) return out class Gemma3Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args, layer_idx=layer_idx) for layer_idx in range(args.num_hidden_layers) ] self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ): h = self.embed_tokens(inputs) h *= mx.array(self.args.hidden_size**0.5, mx.bfloat16).astype(h.dtype) if cache is None: cache = [None] * len(self.layers) if mask is None: j = self.args.sliding_window_pattern full_mask = create_attention_mask(h, cache[j - 1 : j]) sliding_window_mask = create_attention_mask(h, cache) for i, (layer, c) in enumerate(zip(self.layers, cache)): is_sliding = ( i % self.args.sliding_window_pattern == self.args.sliding_window_pattern - 1 ) if mask is None and is_sliding: mask = sliding_window_mask elif mask is None: mask = full_mask h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.model = Gemma3Model(args) self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, mask: Optional[mx.array] = None, ): out = self.model(inputs, mask, cache) out = self.lm_head(out) return out def sanitize(self, weights): if "lm_head.weight" not in weights: weights["lm_head.weight"] = weights["model.embed_tokens.weight"] return { k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k } @property def layers(self): return self.model.layers def make_cache(self): caches = [] for i in range(self.args.num_hidden_layers): if ( i % self.args.sliding_window_pattern == self.args.sliding_window_pattern - 1 ): caches.append(KVCache()) else: caches.append( RotatingKVCache(max_size=self.args.sliding_window, keep=0) ) return caches