import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .layers import LayerNorm @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int num_key_value_heads: int = None max_position_embeddings: int = 16384 norm_eps: float = None rms_norm_eps: float = 1e-5 norm_type: str = "layer_norm" vocab_size: int = 49152 rope_theta: float = 100000 tie_word_embeddings: bool = True def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads if self.norm_eps is None: self.norm_eps = self.rms_norm_eps class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads self.repeats = self.n_heads // self.n_kv_heads head_dim = args.hidden_size // args.num_attention_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=True) self.rope = nn.RoPE(head_dim, traditional=False, base=args.rope_theta) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) def repeat(a): a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2) return a.reshape([B, self.n_heads, L, -1]) if self.repeats > 1: keys, values = map(repeat, (keys, values)) if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores += mask scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output), (keys, values) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.c_fc = nn.Linear(dim, hidden_dim, bias=True) self.c_proj = nn.Linear(hidden_dim, dim, bias=True) def __call__(self, x): return self.c_proj(nn.gelu(self.c_fc(x))) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.n_heads = args.num_attention_heads self.self_attn = Attention(args) self.mlp = MLP(args.hidden_size, args.intermediate_size) self.input_layernorm = LayerNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = LayerNorm( args.hidden_size, eps=args.rms_norm_eps ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r, cache = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out, cache class Starcoder2Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args) for _ in range(args.num_hidden_layers) ] self.norm = LayerNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for e, layer in enumerate(self.layers): h, cache[e] = layer(h, mask, cache[e]) return self.norm(h), cache class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model = Starcoder2Model(args) # This is for 15B starcoder2 since it doesn't tie word embeddings if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): out, cache = self.model(inputs, cache) if not self.model.args.tie_word_embeddings: return self.lm_head(out), cache else: out = out @ self.model.embed_tokens.weight.T return out, cache @property def layers(self): return self.model.layers