# Copyright © 2023 Apple Inc. import argparse import mlx.core as mx import numpy as np from mlx.nn import QuantizedLinear from PIL import Image from tqdm import tqdm from stable_diffusion import StableDiffusion, StableDiffusionXL if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate images from a textual prompt using stable diffusion" ) parser.add_argument("prompt") parser.add_argument("--model", choices=["sd", "sdxl"], default="sdxl") parser.add_argument("--n_images", type=int, default=4) parser.add_argument("--steps", type=int) parser.add_argument("--cfg", type=float) parser.add_argument("--negative_prompt", default="") parser.add_argument("--n_rows", type=int, default=1) parser.add_argument("--decoding_batch_size", type=int, default=1) parser.add_argument("--no-float16", dest="float16", action="store_false") parser.add_argument("--quantize", "-q", action="store_true") parser.add_argument("--preload-models", action="store_true") parser.add_argument("--output", default="out.png") parser.add_argument("--seed", type=int) parser.add_argument("--verbose", "-v", action="store_true") args = parser.parse_args() # Load the models if args.model == "sdxl": sd = StableDiffusionXL("stabilityai/sdxl-turbo", float16=args.float16) if args.quantize: QuantizedLinear.quantize_module(sd.text_encoder_1) QuantizedLinear.quantize_module(sd.text_encoder_2) QuantizedLinear.quantize_module(sd.unet, group_size=32, bits=8) args.cfg = args.cfg or 0.0 args.steps = args.steps or 2 else: sd = StableDiffusion( "stabilityai/stable-diffusion-2-1-base", float16=args.float16 ) if args.quantize: QuantizedLinear.quantize_module(sd.text_encoder) QuantizedLinear.quantize_module(sd.unet, group_size=32, bits=8) args.cfg = args.cfg or 7.5 args.steps = args.steps or 50 # Ensure that models are read in memory if needed if args.preload_models: sd.ensure_models_are_loaded() # Generate the latent vectors using diffusion latents = sd.generate_latents( args.prompt, n_images=args.n_images, cfg_weight=args.cfg, num_steps=args.steps, seed=args.seed, negative_text=args.negative_prompt, ) for x_t in tqdm(latents, total=args.steps): mx.eval(x_t) # The following is not necessary but it may help in memory # constrained systems by reusing the memory kept by the unet and the text # encoders. if args.model == "sdxl": del sd.text_encoder_1 del sd.text_encoder_2 else: del sd.text_encoder del sd.unet del sd.sampler peak_mem_unet = mx.metal.get_peak_memory() / 1024**3 # Decode them into images decoded = [] for i in tqdm(range(0, args.n_images, args.decoding_batch_size)): decoded.append(sd.decode(x_t[i : i + args.decoding_batch_size])) mx.eval(decoded[-1]) peak_mem_overall = mx.metal.get_peak_memory() / 1024**3 # Arrange them on a grid x = mx.concatenate(decoded, axis=0) x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)]) B, H, W, C = x.shape x = x.reshape(args.n_rows, B // args.n_rows, H, W, C).transpose(0, 2, 1, 3, 4) x = x.reshape(args.n_rows * H, B // args.n_rows * W, C) x = (x * 255).astype(mx.uint8) # Save them to disc im = Image.fromarray(np.array(x)) im.save(args.output) # Report the peak memory used during generation if args.verbose: print(f"Peak memory used for the unet: {peak_mem_unet:.3f}GB") print(f"Peak memory used overall: {peak_mem_overall:.3f}GB")