import json from pathlib import Path from typing import Dict, List from transformers import PreTrainedTokenizer class Dataset: """ Light-weight wrapper to hold a dataset. """ def __init__(self, data: List[Dict[str, str]], text_key: str = "text"): self._text_key = text_key self._data = data def __getitem__(self, idx: int): return self._data[idx][self._text_key] def __len__(self): if self._data is None: return 0 return len(self._data) class ChatDataset(Dataset): """ A dataset for chat data in the format of {"messages": [...]} https://platform.openai.com/docs/guides/fine-tuning/example-format """ def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer): super().__init__(data) self._tokenizer = tokenizer def __getitem__(self, idx: int): messages = self._data[idx]["messages"] text = self._tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) return text class ToolsDataset(Dataset): """ A dataset for tools data in the format of {"messages": [...],"tools":[...]} https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-examples """ def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer): super().__init__(data) self._tokenizer = tokenizer def __getitem__(self, idx: int): messages = self._data[idx]["messages"] tools = self._data[idx]["tools"] text = self._tokenizer.apply_chat_template( messages, tools=tools, tokenize=False, add_generation_prompt=True ) return text class CompletionsDataset(Dataset): """ A dataset for prompt-completion data in the format of {"prompt": ..., "completion": ...} or using user-provided keys for prompt and completion values https://platform.openai.com/docs/guides/fine-tuning/example-format """ def __init__( self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer, prompt_key: str = "prompt", completion_key: str = "completion", ): super().__init__(data) self._tokenizer = tokenizer self._prompt_key = prompt_key self._completion_key = completion_key def __getitem__(self, idx: int): data = self._data[idx] text = self._tokenizer.apply_chat_template( [ {"role": "user", "content": data[self._prompt_key]}, {"role": "assistant", "content": data[self._completion_key]}, ], tokenize=False, add_generation_prompt=True, ) return text def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None): # Return empty dataset for non-existent paths if not path.exists(): return [] with open(path, "r") as fid: data = [json.loads(l) for l in fid] if "messages" in data[0]: if "tools" in data[0]: return ToolsDataset(data, tokenizer) else: return ChatDataset(data, tokenizer) elif "prompt" in data[0] and "completion" in data[0]: return CompletionsDataset(data, tokenizer) elif "text" in data[0]: return Dataset(data) else: raise ValueError( "Unsupported data format, check the supported formats here:\n" "https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md#data." ) def create_local_dataset(args, tokenizer: PreTrainedTokenizer): names = ("train", "valid", "test") data_path = Path(args.data) train, valid, test = [ create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names ] return train, valid, test def create_hf_dataset(args, tokenizer: PreTrainedTokenizer): import datasets hf_args = args.hf_dataset dataset_name = hf_args["name"] print(f"Loading Hugging Face dataset {dataset_name}.") text_feature = hf_args.get("text_feature") prompt_feature = hf_args.get("prompt_feature") completion_feature = hf_args.get("completion_feature") def create_hf_dataset(split: str = None): ds = datasets.load_dataset( dataset_name, split=split, **hf_args.get("config", {}), ) if prompt_feature and completion_feature: return CompletionsDataset( ds, tokenizer, prompt_feature, completion_feature ) elif text_feature: return Dataset(train_ds, text_key=text_feature) else: raise ValueError( "Specify either a prompt and completion feature or a text " "feature for the Hugging Face dataset." ) if args.train: train_split = hf_args.get("train_split", "train[:80%]") valid_split = hf_args.get("valid_split", "train[-10%:]") train = create_hf_dataset(split=train_split) valid = create_hf_dataset(split=valid_split) else: train, valid = [], [] if args.test: test = create_hf_dataset(split=hf_args.get("test_split")) else: test = [] return train, valid, test def load_dataset(args, tokenizer: PreTrainedTokenizer): if getattr(args, "hf_dataset", None) is not None: train, valid, test = create_hf_dataset(args, tokenizer) else: train, valid, test = create_local_dataset(args, tokenizer) if args.train and len(train) == 0: raise ValueError( "Training set not found or empty. Must provide training set for fine-tuning." ) if args.train and len(valid) == 0: raise ValueError( "Validation set not found or empty. Must provide validation set for fine-tuning." ) if args.test and len(test) == 0: raise ValueError( "Test set not found or empty. Must provide test set for evaluation." ) return train, valid, test