from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn import numpy as np from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): vocab_size: int = 32000 max_position_embeddings: int = 4096 * 32 hidden_size: int = 4096 intermediate_size: int = 14336 num_hidden_layers: int = 32 num_attention_heads: int = 32 num_experts_per_tok: int = 2 num_key_value_heads: int = 8 num_local_experts: int = 8 rms_norm_eps: float = 1e-5 vocab_size: int rope_theta: float = 1e6 rope_traditional: bool = False model_type: str = None rope_scaling: Optional[Dict[str, Union[float, str]]] = None def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads class RMSNorm(nn.Module): def __init__(self, dims: int, eps: float = 1e-5): super().__init__() self.weight = mx.ones((dims,)) self.eps = eps def _norm(self, x): return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps) def __call__(self, x): output = self._norm(x.astype(mx.float32)).astype(x.dtype) return self.weight * output class MixtralAttention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.num_heads = args.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = args.num_key_value_heads self.max_position_embeddings = args.max_position_embeddings self.rope_theta = args.rope_theta self.repeats = self.num_heads // self.num_key_value_heads self.scale = self.head_dim**-0.5 self.q_proj = nn.Linear( self.hidden_size, self.num_heads * self.head_dim, bias=False ) self.k_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False ) self.v_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False ) self.o_proj = nn.Linear( self.num_heads * self.head_dim, self.hidden_size, bias=False ) self.rope = nn.RoPE( self.head_dim, traditional=args.rope_traditional, base=args.rope_theta, ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.num_key_value_heads, -1).transpose( 0, 2, 1, 3 ) def repeat(a): a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2) return a.reshape([B, self.num_heads, L, -1]) if self.repeats > 1: keys, values = map(repeat, (keys, values)) if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores += mask scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output), (keys, values) class MixtralBLockSparseTop2MLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.ffn_dim = args.intermediate_size self.hidden_dim = args.hidden_size self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.act_fn = nn.silu def __call__(self, x: mx.array) -> mx.array: current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states class MixtralSparseMoeBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_dim = args.hidden_size self.ffn_dim = args.intermediate_size self.num_experts = args.num_local_experts self.num_experts_per_tok = args.num_experts_per_tok # gating self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) self.experts = [ MixtralBLockSparseTop2MLP(args=args) for _ in range(self.num_experts) ] def __call__(self, x: mx.array) -> mx.array: ne = self.num_experts_per_tok orig_shape = x.shape x = x.reshape(-1, x.shape[-1]) gates = self.gate(x) inds = mx.stop_gradient( mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne] ) # TODO remove it once we figure out how to fine tune TopK in MOE scores = mx.softmax( mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32), axis=-1, ).astype(gates.dtype) if self.training: mx.eval(inds) inds = np.array(inds) y = mx.zeros((x.shape[0], ne, x.shape[-1])) for e, expert in enumerate(self.experts): idx1, idx2 = map(mx.array, np.where(inds == e)) if idx1.size == 0: continue y[idx1, idx2] = expert(x[idx1]) y = (y * scores[:, :, None]).sum(axis=1) else: y = [] for xt, st, it in zip(x, scores, inds.tolist()): yt = mx.concatenate([self.experts[e](xt)[:, None] for e in it], axis=-1) yt = (yt * st).sum(axis=-1) y.append(yt[None, :]) y = mx.concatenate(y) return y.reshape(orig_shape) class MixtralDecoderLayer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.self_attn = MixtralAttention(args) self.block_sparse_moe = MixtralSparseMoeBlock(args) self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r, cache = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.block_sparse_moe(self.post_attention_layernorm(h)) out = h + r return out, cache class MixtralModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ MixtralDecoderLayer(args=args) for _ in range(args.num_hidden_layers) ] self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) mask = None T = h.shape[1] if T > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(T) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for e, layer in enumerate(self.layers): h, cache[e] = layer(h, mask, cache[e]) return self.norm(h), cache class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model = MixtralModel(args) self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): out, cache = self.model(inputs, cache) return self.lm_head(out), cache