from dataclasses import dataclass from sys import exit from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs @dataclass class ModelArgs(BaseModelArgs): d_model: int n_layers: int mlp_hidden_size: int n_heads: int vocab_size: int embedding_size: int rope_theta: float = 10000 rope_traditional: bool = False model_type: str = None mlp_ratio: int = 4 weight_tying: bool = False def __post_init__(self): self.mlp_hidden_size = ( self.mlp_hidden_size if self.mlp_hidden_size is not None else self.mlp_ratio * self.d_model ) class LayerNorm(nn.LayerNorm): def __call__(self, x: mx.array) -> mx.array: return super().__call__(x.astype(mx.float32)).astype(x.dtype) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_heads = args.n_heads dim = args.d_model self.ff_proj = nn.Linear(dim, args.mlp_hidden_size, bias=False) self.ff_out = nn.Linear(args.mlp_hidden_size // 2, dim, bias=False) self.att_norm = LayerNorm(dim, affine=False) self.ff_norm = LayerNorm(dim, affine=False) head_dim = dim // self.n_heads self.scale = head_dim**-0.5 self.att_proj = nn.Linear(dim, 3 * dim, bias=False) self.attn_out = nn.Linear(dim, dim, bias=False) self.rope = nn.RoPE( head_dim, traditional=args.rope_traditional, base=args.rope_theta, ) self.args = args def attend( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = mx.split(self.att_proj(x), 3, axis=-1) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores += mask scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.attn_out(output), (keys, values) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r, cache = self.attend(self.att_norm(x), mask, cache) h = x + r x1, x2 = mx.split(self.ff_proj(self.ff_norm(h)), 2, axis=-1) out = h + self.ff_out(nn.silu(x2) * x1) return out, cache class Transformer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_layers = args.n_layers self.weight_tying = args.weight_tying self.wte = nn.Embedding(args.embedding_size, args.d_model) self.blocks = [TransformerBlock(args=args) for _ in range(args.n_layers)] if not self.weight_tying: self.ff_out = nn.Linear(args.d_model, args.embedding_size, bias=False) self.norm = LayerNorm(args.d_model, affine=False) def __call__( self, inputs: mx.array, cache=None, ): h = self.wte(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.blocks) for e, block in enumerate(self.blocks): h, cache[e] = block(h, mask, cache[e]) h = self.norm(h) if self.weight_tying: return h @ self.wte.weight.T, cache return self.ff_out(h), cache class OlmoModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.transformer = Transformer(args) def __call__( self, inputs: mx.array, cache=None, ): return self.transformer(inputs, cache) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() try: import hf_olmo except ImportError: print("To run olmo install ai2-olmo: pip install ai2-olmo") exit(1) self.model = OlmoModel(args) def __call__( self, inputs: mx.array, cache=None, ): return self.model(inputs, cache)