import unittest import mlx.core as mx from mlx_lm.sample_utils import apply_min_p, apply_top_k, apply_top_p class TestSampleUtils(unittest.TestCase): def test_apply_top_p(self): probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) new_logits = apply_top_p(logits, 0.3) actual_probs = mx.softmax(new_logits.squeeze()) self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0]) new_logits = apply_top_p(logits, 0.95) actual_probs = mx.softmax(new_logits.squeeze()) self.assertTrue(mx.allclose(probs.squeeze(), actual_probs)) probs = mx.array([0.0, 0.5, 0.4, 0.1])[None] logits = mx.log(probs) new_logits = apply_top_p(logits, 0.4) actual_probs = mx.softmax(new_logits.squeeze()) self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0]) new_logits = apply_top_p(logits, 0.6) actual_probs = mx.softmax(new_logits.squeeze()) self.assertEqual( [round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0] ) new_logits = apply_top_p(logits, 0.95) actual_probs = mx.softmax(new_logits.squeeze()) actual_rounded = [round(p, 4) for p in actual_probs.tolist()] expected_rounded = [0.0, 0.5, 0.4, 0.1] self.assertEqual(actual_rounded, expected_rounded) self.assertAlmostEqual(sum(actual_probs.tolist()), 1.0) # Batch mode works probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]]) logits = mx.log(probs) new_logits = apply_top_p(logits, 0.5) actual_probs = mx.softmax(new_logits, axis=-1) self.assertEqual( actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]] ) def test_apply_min_p(self): probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) new_logits = apply_min_p(logits, 0.8) actual_probs = mx.softmax(new_logits.squeeze()) self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0]) probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) new_logits = apply_min_p(logits, 0.05) actual_probs = mx.softmax(new_logits.squeeze()) self.assertTrue(mx.allclose(actual_probs, mx.squeeze(probs))) # Batch mode works probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]]) logits = mx.log(probs) new_logits = apply_min_p(logits, 0.7) actual_probs = mx.softmax(new_logits, axis=-1) self.assertEqual( actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]] ) def test_apply_top_k(self): probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) new_logits = apply_top_k(logits, 1) actual_probs = mx.softmax(new_logits.squeeze()) self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0]) probs = mx.array([0.6, 0.0, 0.1, 0.3])[None] logits = mx.log(probs) new_logits = apply_top_k(logits, 2) actual_probs = mx.softmax(new_logits.squeeze()) self.assertEqual( [round(p, 4) for p in actual_probs.tolist()], [0.6667, 0.0, 0.0, 0.3333] ) # Batch mode works probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]]) logits = mx.log(probs) new_logits = apply_top_k(logits, 1) actual_probs = mx.softmax(new_logits, axis=-1) self.assertEqual( actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]] ) if __name__ == "__main__": unittest.main()