# Copyright © 2023 Apple Inc. import inspect import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn @dataclass class ModelArgs: hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int rms_norm_eps: float vocab_size: int num_key_value_heads: Optional[int] = None rope_theta: float = 10000 rope_traditional: bool = False model_type: Optional[str] = None rope_scaling: Optional[Dict[str, Union[float, str]]] = None def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads if self.rope_scaling: required_keys = {"factor", "type"} if not all(key in self.rope_scaling for key in required_keys): raise ValueError(f"rope_scaling must contain keys {required_keys}") if self.rope_scaling["type"] != "linear": raise ValueError("rope_scaling 'type' currently only supports 'linear'") @classmethod def from_dict(cls, params): return cls( **{ k: v for k, v in params.items() if k in inspect.signature(cls).parameters } ) class LoRALinear(nn.Module): @staticmethod def from_linear(linear: nn.Linear, rank: int = 8): # TODO remove when input_dims and output_dims are attributes # on linear and quantized linear output_dims, input_dims = linear.weight.shape if isinstance(linear, nn.QuantizedLinear): input_dims *= 32 // linear.bits lora_lin = LoRALinear(input_dims, output_dims, rank) lora_lin.linear = linear return lora_lin def to_linear(self): linear = self.linear bias = "bias" in linear weight = linear.weight is_quantized = isinstance(linear, nn.QuantizedLinear) # Use the same type as the linear weight if not quantized dtype = weight.dtype if is_quantized: dtype = mx.float16 weight = mx.dequantize( weight, linear.scales, linear.biases, linear.group_size, linear.bits, ) output_dims, input_dims = weight.shape fused_linear = nn.Linear(input_dims, output_dims, bias=bias) lora_b = (self.scale * self.lora_b.T).astype(dtype) lora_a = self.lora_a.T.astype(dtype) fused_linear.weight = weight + lora_b @ lora_a if bias: fused_linear.bias = linear.bias if is_quantized: fused_linear = nn.QuantizedLinear.from_linear( fused_linear, linear.group_size, linear.bits, ) return fused_linear def __init__( self, input_dims: int, output_dims: int, lora_rank: int = 8, bias: bool = False, scale: float = 20.0, ): super().__init__() # Regular linear layer weights self.linear = nn.Linear(input_dims, output_dims, bias=bias) # Scale for low-rank update self.scale = scale # Low rank lora weights scale = 1 / math.sqrt(input_dims) self.lora_a = mx.random.uniform( low=-scale, high=scale, shape=(input_dims, lora_rank), ) self.lora_b = mx.zeros(shape=(lora_rank, output_dims)) def __call__(self, x): dtype = self.linear.weight.dtype if isinstance(self.linear, nn.QuantizedLinear): dtype = self.linear.scales.dtype y = self.linear(x.astype(dtype)) z = (x @ self.lora_a) @ self.lora_b return y + self.scale * z class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads self.repeats = n_heads // n_kv_heads head_dim = args.hidden_size // n_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) rope_scale = ( 1 / float(args.rope_scaling["factor"]) if args.rope_scaling is not None and args.rope_scaling["type"] == "linear" else 1 ) self.rope = nn.RoPE( head_dim, traditional=args.rope_traditional, base=args.rope_theta, scale=rope_scale, ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output), (keys, values) class MLP(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, dim, bias=False) self.up_proj = nn.Linear(dim, hidden_dim, bias=False) def __call__(self, x) -> mx.array: return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.num_attention_heads = args.num_attention_heads self.hidden_size = args.hidden_size self.self_attn = Attention(args) self.mlp = MLP(args.hidden_size, args.intermediate_size) self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = nn.RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r, cache = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out, cache class LlamaModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size self.num_hidden_layers = args.num_hidden_layers assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ TransformerBlock(args=args) for _ in range(args.num_hidden_layers) ] self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, cache=None, ): h = self.embed_tokens(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for e, layer in enumerate(self.layers): h, cache[e] = layer(h, mask, cache[e]) return self.norm(h), cache class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.model = LlamaModel(args) self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): out, cache = self.model(inputs, cache) return self.lm_head(out), cache