import math from dataclasses import dataclass, field from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .cache import MambaCache @dataclass class ModelArgs(BaseModelArgs): model_type: str num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool rescale_prenorm_residual: bool rms_norm: bool chunk_size: int tie_word_embeddings: bool dim: int = None intermediate_size: int = None time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) time_step_rank: Union[int, str] = "auto" time_step_min: float = 0.001 time_step_max: float = 0.1 time_step_floor: float = 1e-4 A_init_min: float = 1.0 A_init_max: float = 16.0 def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "hidden_size"): self.hidden_size = self.dim if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states def silu(x): return x * mx.sigmoid(x) class DepthWiseConv1d(nn.Module): def __init__(self, channels, kernel_size, bias=True, padding=0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.padding = padding self.weight = mx.random.normal((channels, kernel_size, 1)) self.bias = mx.zeros((channels,)) if bias else None def __call__(self, x, cache=None): B, L, C = x.shape _, K, _ = self.weight.shape if cache is not None: x = mx.concatenate([cache, x], axis=1) else: x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)]) y = mx.conv_general(x, self.weight, groups=C) y = y + self.bias return y, x[:, -K + 1:, :] class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args # Same dimensions as before self.d_model = args.hidden_size self.d_state = args.state_size self.d_conv = args.conv_kernel self.expand = args.expand self.d_inner = int(self.expand * self.d_model) self.n_groups = args.n_groups self.n_heads = args.num_heads self.d_head = self.d_inner // self.n_heads # Input projection d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias) # Improved initialization of dt dt = mx.exp( mx.random.uniform( low=math.log(args.time_step_min), high=math.log(args.time_step_max), shape=(self.n_heads,) ) ) dt = mx.clip(dt, args.time_step_floor, float('inf')) inv_dt = dt + mx.log(-mx.exp(-dt) + 1) # Inverse softplus self.dt_bias = mx.array(inv_dt) # Improved A initialization A = mx.random.uniform( low=args.A_init_min, high=args.A_init_max, shape=(self.n_heads,) ) self.A_log = mx.log(A) # Same D initialization self.D = mx.random.normal((self.n_heads,)) * args.initializer_range # Convolution with proper initialization self.conv1d = DepthWiseConv1d( channels=self.d_inner + 2 * self.n_groups * self.d_state, kernel_size=self.d_conv, bias=args.use_conv_bias, padding=self.d_conv-1 ) # Output projections self.norm = MambaRMSNormGated(self.d_inner, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias) def __call__(self, u: mx.array, cache=None): batch_size, seq_len, _ = u.shape # Project input zxbcdt = self.in_proj(u) z = zxbcdt[..., :self.d_inner] xBC = zxbcdt[..., self.d_inner:self.d_inner + (self.d_inner + 2 * self.n_groups * self.d_state)] dt = zxbcdt[..., -self.n_heads:] # Process dt dt = nn.softplus(dt + self.dt_bias) # Conv1d and activation xBC, conv_state = self.conv1d(xBC, cache[0] if cache else None) if cache is not None: cache[0] = conv_state xBC = silu(xBC) xBC = xBC[:, :seq_len, :] # Split conv output and reshape x = xBC[..., :self.d_inner] B = mx.reshape(xBC[..., self.d_inner:self.d_inner + self.n_groups * self.d_state], (batch_size, seq_len, self.n_groups, -1)) C = mx.reshape(xBC[..., -self.n_groups * self.d_state:], (batch_size, seq_len, self.n_groups, -1)) x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head)) # Initialize state if cache and cache[1] is not None: prev_state = cache[1] else: prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state)) # Compute dA A = -mx.exp(self.A_log) dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads)) dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1))) # Process sequence next_state = prev_state outputs = [] for t in range(seq_len): xt = x[:, t] Bt = B[:, t] Ct = C[:, t] dAt = dA[:, t] # Update state dBx = mx.einsum('bh,bgd,bhp->bhpd', dAt, Bt, xt) next_state = next_state * mx.expand_dims(dAt, axis=(-1, -2)) + dBx # Compute output yt = mx.einsum('bhpd,bgd->bhp', next_state, Ct) yt = yt + xt * mx.expand_dims(self.D, -1) # Reshape and normalize yt = mx.reshape(yt, (batch_size, 1, self.d_inner)) yt = self.norm(yt, z[:, t:t+1]) outputs.append(self.out_proj(yt)) # Update cache if cache is not None: cache[1] = next_state return mx.concatenate(outputs, axis=1) class ResidualBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.residual_in_fp32 = args.residual_in_fp32 self.mixer = Mamba2Block(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): if self.residual_in_fp32: x = x.astype(mx.float32) normed = self.norm(x) output = self.mixer(normed, cache) return output + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, x: mx.array, cache): x = self.embeddings(x) if cache is None: cache = [None] * len(self.layers) hidden = x for layer, c in zip(self.layers, cache): hidden = layer(hidden, c) return self.norm_f(hidden) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): hidden = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(hidden) else: logits = self.lm_head(hidden) return logits def sanitize(self, weights): for k, v in weights.items(): if "conv1d.weight" in k and v.shape[-1] != 1: weights[k] = v.moveaxis(2, 1) return weights def make_cache(self): return [MambaCache() for _ in range(len(self.layers))] @property def layers(self): return self.backbone.layers