import math from dataclasses import dataclass, field from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .cache import MambaCache @dataclass class ModelArgs(BaseModelArgs): num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool time_step_min: float time_step_max: float time_step_floor: float rescale_prenorm_residual: bool use_cache: bool rms_norm: bool chunk_size: int tie_word_embeddings: bool time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) time_step_rank: Union[int, str] = "auto" model_type: str = "mamba2" def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states class DepthWiseConv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.groups = groups if groups is not None else in_channels # Ensure in_channels and out_channels are the same for depthwise conv assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution" # Ensure groups is equal to in_channels for depthwise conv assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution" # Initialize weight with shape (out_channels, kernel_size, 1) self.weight = mx.random.normal((out_channels, kernel_size, 1)) self.bias = mx.zeros((out_channels,)) if bias else None def __call__(self, x, cache=None): B, L, C = x.shape _, K, _ = self.weight.shape if cache is not None: x = mx.concatenate([cache, x], axis=1) else: x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)]) y = mx.conv_general(x, self.weight, groups=self.groups) if self.bias is not None: y = y + self.bias return y, x[:, -K + 1 :, :] class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.intermediate_size = args.intermediate_size self.time_step_rank = args.time_step_rank self.conv_kernel_size = args.conv_kernel self.hidden_size = args.hidden_size self.state_size = args.state_size self.num_heads = args.num_heads self.head_dim = args.hidden_size // args.num_heads self.n_groups = args.n_groups # projection_size = 2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads projection_size = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads self.in_proj = nn.Linear( args.hidden_size, projection_size, bias=args.use_bias ) # self.conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size self.conv_dim = args.intermediate_size + 2 * args.state_size self.conv1d = DepthWiseConv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, kernel_size=args.conv_kernel, bias=args.use_conv_bias, groups=self.conv_dim, padding=args.conv_kernel - 1 ) self.A_log = mx.zeros(args.num_heads) self.D = mx.ones((args.num_heads,)) self.dt_bias = mx.zeros(args.num_heads) self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias) self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon) def _ssd(self, x, A, B, C, chunk_size): batch, seq_len, nheads, head_dim = x.shape n_state = B.shape[-1] h = mx.zeros((batch, nheads, head_dim, n_state)) ys = [] for i in range(0, seq_len, chunk_size): chunk_size_i = min(chunk_size, seq_len - i) xi = x[:, i:i + chunk_size_i] Bi = B[:, i:i + chunk_size_i] Ci = C[:, i:i + chunk_size_i] for t in range(chunk_size_i): h = h * mx.exp(A)[:, None, None] h = h + mx.expand_dims(Bi[:, t], -2) * mx.expand_dims(xi[:, t], -1) y = mx.sum(h * mx.expand_dims(Ci[:, t], -2), axis=-1) ys.append(y) y = mx.stack(ys, axis=1) return y, h def __call__(self, x: mx.array, cache) -> mx.array: if cache is not None: return self.step(x, cache) A = -mx.exp(self.A_log) zxbcdt = self.in_proj(u) z, xBC, dt = mx.split( zxbcdt, [ self.args.d_inner, self.args.d_inner + 2 * self.args.d_state, self.args.nheads, ], axis=-1, ) dt = mx.softplus(dt + self.dt_bias) # Use the custom DepthWiseConv1d with cache xBC = self.conv1d(xBC, cache, cache_idx=0) xBC = mx.sigmoid(xBC) * xBC # SiLU activation x, B, C = mx.split( xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], axis=-1 ) x = self._reshape_heads(x, True) B = mx.expand_dims(B, axis=2) C = mx.expand_dims(C, axis=2) y, ssm_state = self._ssd( x * mx.expand_dims(dt, -1), A * dt, B, C, self.args.chunk_size ) y = y + x * mx.expand_dims(self.D, -1) y = self._reshape_heads(y, False) y = self.norm(y, z) y = self.out_proj(y) if cache is not None: cache[1] = ssm_state return y def step(self, x: mx.array, cache) -> mx.array: """Single inference step""" assert x.shape[1] == 1, "Only one token can be decoded per inference step" zxbcdt = self.in_proj(mx.squeeze(x, 1)) z, xBC, dt = mx.split( zxbcdt, [ self.args.d_inner, self.args.d_inner + 2 * self.args.d_state, self.args.nheads, ], axis=-1, ) # Use the custom DepthWiseConv1d with cache xBC = self.conv1d(xBC, cache, cache_idx=0) xBC = mx.sigmoid(xBC) * xBC # SiLU activation x, B, C = mx.split( xBC, [self.args.d_inner, self.args.d_state, self.args.d_state], axis=-1 ) A = -mx.exp(self.A_log) dt = mx.softplus(dt + self.dt_bias) dA = mx.exp(dt * A) x = mx.reshape(x, (-1, self.args.nheads, self.args.headdim)) ssm_state = cache[1] dBx = mx.expand_dims(dt, -1) * mx.expand_dims(B, 1) * mx.expand_dims(x, -1) ssm_state = ssm_state * mx.expand_dims(mx.expand_dims(dA, -1), -1) + dBx y = mx.sum(ssm_state * mx.expand_dims(mx.expand_dims(C, 1), 1), axis=-1) y = y + mx.expand_dims(self.D, -1) * x y = mx.reshape(y, (-1, self.args.nheads * self.args.headdim)) y = self.norm(y, z) y = self.out_proj(y) # Update SSM state in cache cache[1] = ssm_state return mx.expand_dims(y, 1) class ResidualBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.mixer = Mamba2Block(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): return self.mixer(self.norm(x), cache) + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, x: mx.array, cache): x = self.embeddings(x) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): x = layer(x, c) return self.norm_f(x) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) # self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): B, T = inputs.shape x = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(x) else: logits = self.lm_head(x) return logits def sanitize(self, weights): for k, v in weights.items(): if "conv1d.weight" in k and v.ndim == 3: weights[k] = v.moveaxis(2, 1) return weights def make_cache(self): return [MambaCache() for _ in range(len(self.layers))] @property def layers(self): return self.backbone.layers