import unittest import mlx.core as mx from mlx_lm.sample_utils import min_p_sampling, top_k_sampling, top_p_sampling class TestSampleUtils(unittest.TestCase): def test_top_p_sampling(self): probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) actual_logits = top_p_sampling(logits, 0.3) actual_probs = mx.softmax(actual_logits.squeeze()) self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0]) actual_logits = top_p_sampling(logits, 0.95) actual_probs = mx.softmax(actual_logits.squeeze()) self.assertEqual(probs.squeeze().tolist(), actual_probs.tolist()) probs = mx.array([0.0, 0.5, 0.4, 0.1])[None] logits = mx.log(probs) actual_logits = top_p_sampling(logits, 0.4) actual_probs = mx.softmax(actual_logits.squeeze()) self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0]) actual_logits = top_p_sampling(logits, 0.6) actual_probs = mx.softmax(actual_logits.squeeze()) self.assertEqual( [round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0] ) actual_logits = top_p_sampling(logits, 0.95) actual_probs = mx.softmax(actual_logits.squeeze()) actual_rounded = [round(p, 4) for p in actual_probs.tolist()] expected_rounded = [0.0, 0.5, 0.4, 0.1] self.assertEqual(actual_rounded, expected_rounded) self.assertAlmostEqual(sum(actual_probs.tolist()), 1.0) # Batch mode works probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]]) logits = mx.log(probs) actual_logits = top_p_sampling(logits, 0.5) actual_probs = mx.softmax(actual_logits, axis=-1) self.assertEqual( actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]] ) def test_min_p_sampling(self): probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) temperature = 1.0 token = min_p_sampling(logits, 0.8) self.assertEqual(token, 0) probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) temperature = 1.0 for _ in range(5): token = min_p_sampling(logits, 0.05) self.assertTrue(token in (0, 3)) # Batch mode works probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]]) logits = mx.log(probs) tokens = min_p_sampling(logits, 0.7) self.assertEqual(tokens.tolist(), [0, 1]) def test_top_k_sampling(self): probs = mx.array([0.9, 0.0, 0.0, 0.1])[None] logits = mx.log(probs) token = top_k_sampling(logits, 1).item() self.assertEqual(token, 0) probs = mx.array([0.5, 0.0, 0.0, 0.5])[None] tokens = set() for _ in range(100): token = top_k_sampling(logits, 2) tokens.add(token.item()) self.assertEqual(tokens, {0, 3}) # Batch mode works probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]]) logits = mx.log(probs) tokens = top_k_sampling(logits, 1) self.assertEqual(tokens.tolist(), [0, 1]) if __name__ == "__main__": unittest.main()