""" DeciLM model implementation for MLX. Supports Neural Architecture Search (NAS) optimized models with: - Dummy layers (no-op attention/FFN) - Variable Grouped Query Attention - FFN Fusion """ import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Any import mlx.core as mx import mlx.nn as nn from mlx_lm.models.base import BaseModelArgs @dataclass class DeciLMArgs(BaseModelArgs): """Arguments for DeciLM model.""" model_type: str = "decilm" hidden_size: int = 4096 num_hidden_layers: int = 32 intermediate_size: int = 11008 num_attention_heads: int = 32 num_key_value_heads: int = 8 rms_norm_eps: float = 1e-6 vocab_size: int = 32000 attention_bias: bool = False rope_theta: float = 10000 rope_traditional: bool = False rope_scaling: Optional[Dict[str, Any]] = None # DeciLM specific block_configs: Optional[list] = None # Per-layer configurations def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads class DummyAttention(nn.Module): """Dummy attention layer that passes input through unchanged.""" def __init__(self, args: DeciLMArgs): super().__init__() # No parameters - just pass through def __call__(self, x, mask=None, cache=None): # Return input unchanged return x class DummyFFN(nn.Module): """Dummy FFN layer that passes input through unchanged.""" def __init__(self, args: DeciLMArgs): super().__init__() # No parameters - just pass through def __call__(self, x): # Return input unchanged return x class VariableAttention(nn.Module): """Attention with variable number of KV heads per layer.""" def __init__(self, args: DeciLMArgs, n_kv_heads: int): super().__init__() self.n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads # Variable per layer self.head_dim = args.hidden_size // args.num_attention_heads self.scale = self.head_dim**-0.5 self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=args.attention_bias) self.k_proj = nn.Linear(args.hidden_size, self.n_kv_heads * self.head_dim, bias=args.attention_bias) self.v_proj = nn.Linear(args.hidden_size, self.n_kv_heads * self.head_dim, bias=args.attention_bias) self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=args.attention_bias) rope_scale = 1.0 if args.rope_scaling: rope_scale = args.rope_scaling.get("factor", 1.0) self.rope = nn.RoPE(self.head_dim, traditional=args.rope_traditional, base=args.rope_theta, scale=rope_scale) def __call__(self, x, mask=None, cache=None): B, L, _ = x.shape queries = self.q_proj(x).reshape(B, L, self.n_heads, self.head_dim).transpose(0, 2, 1, 3) keys = self.k_proj(x).reshape(B, L, self.n_kv_heads, self.head_dim).transpose(0, 2, 1, 3) values = self.v_proj(x).reshape(B, L, self.n_kv_heads, self.head_dim).transpose(0, 2, 1, 3) # Apply RoPE queries = self.rope(queries, offset=cache.offset if cache else 0) keys = self.rope(keys, offset=cache.offset if cache else 0) # Update cache if provided if cache is not None: keys, values = cache.update_and_fetch(keys, values) # Repeat KV heads if needed if self.n_kv_heads != self.n_heads: n_rep = self.n_heads // self.n_kv_heads keys = mx.repeat(keys, n_rep, axis=1) values = mx.repeat(values, n_rep, axis=1) # Compute attention scores = (queries @ keys.transpose(0, 1, 3, 2)) * self.scale if mask is not None: scores = scores + mask scores = mx.softmax(scores, axis=-1) output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class VariableFFN(nn.Module): """FFN with variable expansion ratio.""" def __init__(self, args: DeciLMArgs, ffn_mult: float): super().__init__() # Calculate intermediate size based on multiplier intermediate_size = int(args.hidden_size * ffn_mult) self.gate_proj = nn.Linear(args.hidden_size, intermediate_size, bias=False) self.up_proj = nn.Linear(args.hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, args.hidden_size, bias=False) def __call__(self, x): return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class DeciLMBlock(nn.Module): """Transformer block with DeciLM variable architecture.""" def __init__(self, args: DeciLMArgs, block_config: dict): super().__init__() self.args = args self.block_config = block_config # Layer norms always present self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) # Attention layer (can be dummy) attn_config = block_config["attention"] if attn_config.get("no_op", False): self.self_attn = DummyAttention(args) else: n_kv_heads = attn_config.get("n_heads_in_group", args.num_key_value_heads) self.self_attn = VariableAttention(args, n_kv_heads) # FFN layer (can be dummy) ffn_config = block_config["ffn"] if ffn_config.get("no_op", False): self.mlp = DummyFFN(args) else: ffn_mult = ffn_config.get("ffn_mult", 2.5) self.mlp = VariableFFN(args, ffn_mult) def __call__(self, x, mask=None, cache=None): # Self attention (may be dummy/no-op) r = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r # FFN (may be dummy/no-op) r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class DeciLMModel(nn.Module): """DeciLM model with NAS-optimized architecture.""" def __init__(self, args: DeciLMArgs): super().__init__() self.args = args self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) # Build layers with per-layer configs self.layers = [] for i, block_config in enumerate(args.block_configs): self.layers.append(DeciLMBlock(args, block_config)) self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__(self, inputs, cache=None): h = self.embed_tokens(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): """Full DeciLM model for generation.""" def __init__(self, args: DeciLMArgs): super().__init__() self.args = args self.model = DeciLMModel(args) self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs, cache=None): out = self.model(inputs, cache) return self.lm_head(out) def sanitize(self, weights): # Convert weights if needed return weights @property def layers(self): return self.model.layers