from typing import Any, Optional, Tuple from dataclasses import dataclass import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, scaled_dot_product_attention, create_attention_mask @dataclass class ModelArgs(BaseModelArgs): hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int num_key_value_heads: int rms_norm_eps: float vocab_size: int attention_bias: bool attention_dropout: float head_dim: int initializer_range: float max_position_embeddings: int mlp_bias: bool model_type: str = "helium" rope_theta: float = 100000.0 tie_word_embeddings: bool = False def rotate_half(x: mx.array) -> mx.array: """Rotates half the hidden dims of the input.""" x1 = x[..., ::2] x2 = x[..., 1::2] return mx.concatenate([-x2, x1], axis=-1) def apply_rotary_pos_emb(q: mx.array, k: mx.array, cos: mx.array, sin: mx.array, position_ids=None, unsqueeze_dim=1) -> Tuple[mx.array, mx.array]: """ Applies Rotary Position Embedding to the query and key tensors. Args: q: Query tensor k: Key tensor cos: Cosine part of the rotary embedding sin: Sine part of the rotary embedding position_ids: Deprecated and unused unsqueeze_dim: Dimension to unsqueeze for broadcasting """ # Unsqueeze cos and sin for _ in range(unsqueeze_dim): cos = mx.expand_dims(cos, 1) sin = mx.expand_dims(sin, 1) # Interleave the cos and sin values cos = mx.repeat(cos[..., :cos.shape[-1] // 2], repeats=2, axis=-1) sin = mx.repeat(sin[..., :sin.shape[-1] // 2], repeats=2, axis=-1) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def apply_rotary_pos_emb(q: mx.array, k: mx.array, cos: mx.array, sin: mx.array, position_ids=None, unsqueeze_dim=1) -> Tuple[mx.array, mx.array]: """ Applies Rotary Position Embedding to the query and key tensors. Args: q: Query tensor (batch, n_heads, seq_len, head_dim) k: Key tensor (batch, n_heads, seq_len, head_dim) cos: Cosine part of rotary embedding (batch, seq_len, head_dim) sin: Sine part of rotary embedding (batch, seq_len, head_dim) """ # Reshape cos and sin to match the query/key shape cos = mx.expand_dims(cos, axis=1) # (batch, 1, seq_len, head_dim) sin = mx.expand_dims(sin, axis=1) # (batch, 1, seq_len, head_dim) # Make sure we only rotate half of the dimensions head_dim = q.shape[-1] cos = mx.repeat(cos[..., :head_dim//2], repeats=2, axis=-1) sin = mx.repeat(sin[..., :head_dim//2], repeats=2, axis=-1) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class HeliumRotaryEmbedding(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.head_dim = config.hidden_size // config.num_attention_heads self.base = config.rope_theta def __call__(self, x: mx.array, position_ids: mx.array) -> Tuple[mx.array, mx.array]: """ Args: x: Input tensor (batch, seq_len, hidden_size) position_ids: Position IDs (batch, seq_len) Returns: Tuple of (cos, sin) tensors for rotary embeddings """ batch_size, seq_length = position_ids.shape # Initialize output tensors for cos and sin cos_cached = [] sin_cached = [] # Generate embeddings for each position for i in range(seq_length): # Create position-specific embedding theta = 1.0 / (self.base ** (mx.arange(self.head_dim//2) / (self.head_dim//2))) pos_embedding = i * theta # Calculate cos and sin cos = mx.cos(pos_embedding) sin = mx.sin(pos_embedding) cos_cached.append(cos) sin_cached.append(sin) # Stack along sequence dimension cos_cached = mx.stack(cos_cached, axis=0) # (seq_len, head_dim//2) sin_cached = mx.stack(sin_cached, axis=0) # (seq_len, head_dim//2) # Add batch dimension and expand cos_cached = mx.expand_dims(cos_cached, axis=0) # (1, seq_len, head_dim//2) sin_cached = mx.expand_dims(sin_cached, axis=0) # (1, seq_len, head_dim//2) # Repeat for batch size cos_cached = mx.repeat(cos_cached, batch_size, axis=0) # (batch, seq_len, head_dim//2) sin_cached = mx.repeat(sin_cached, batch_size, axis=0) # (batch, seq_len, head_dim//2) return cos_cached, sin_cached class HeliumAttention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads assert args.num_key_value_heads is not None self.n_kv_heads = n_kv_heads = args.num_key_value_heads head_dim = args.hidden_size // n_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) def __call__( self, x: mx.array, position_embeddings: tuple[mx.array, mx.array], # (cos, sin) mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) # Apply rotary embeddings cos, sin = position_embeddings queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin) if cache is not None: keys, values = cache.update_and_fetch(keys, values) output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class HeliumMLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.intermediate_size = args.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=args.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=args.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.mlp_bias) def __call__(self, x: mx.array) -> mx.array: return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class HeliumDecoderLayer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.self_attn = HeliumAttention(args) self.mlp = HeliumMLP(args) self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, x: mx.array, position_embeddings: tuple[mx.array, mx.array], mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x), position_embeddings, mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class HeliumModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.num_hidden_layers = args.num_hidden_layers self.vocab_size = args.vocab_size assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ HeliumDecoderLayer(args) for _ in range(args.num_hidden_layers) ] self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) # Create RoPE embeddings to be shared across layers self.rotary_emb = HeliumRotaryEmbedding(args) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ) -> mx.array: h = self.embed_tokens(inputs) if mask is None: mask = create_attention_mask(h, cache) # Generate position embeddings once to be shared across layers position_embeddings = self.rotary_emb(h, inputs) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, position_embeddings, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.model = HeliumModel(args) self.vocab_size = args.vocab_size self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ) -> mx.array: out = self.model(inputs, mask, cache) if self.args.tie_word_embeddings: out = self.model.embed_tokens.as_linear(out) else: out = self.lm_head(out) return out @property def layers(self): return self.model.layers