# Copyright © 2023-2024 Apple Inc. from dataclasses import dataclass from typing import Any, Dict, Optional, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int rms_norm_eps: float vocab_size: int rope_theta: float embed_dropout: float attention_dropout: float layer_norm_epsilon: float activation_function: str num_key_value_heads: Optional[int] = None head_dim: Optional[int] = None max_position_embeddings: Optional[int] = None rope_traditional: bool = False rope_scaling: Optional[Dict[str, Union[float, str]]] = None tie_word_embeddings: bool = True attn_implementation: str = "eager" # For simplicity, we assume no bias in Q, K, V, and MLP similar to the original code attention_bias: bool = False mlp_bias: bool = False @classmethod def from_dict(cls, params): if 'num_layers' in params: params['num_hidden_layers'] = params['num_layers'] if 'layer_norm_epsilon' in params: params['rms_norm_eps'] = params['layer_norm_epsilon'] return super().from_dict(params) def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads if self.rope_scaling: rope_type = self.rope_scaling.get("type") or self.rope_scaling.get("rope_type") if rope_type is None: raise ValueError("rope_scaling must contain either 'type' or 'rope_type'") if rope_type not in ["linear", "dynamic", "llama3", "default"]: raise ValueError( "rope_scaling 'type' currently only supports 'linear', 'dynamic', 'llama3', or 'default'" ) class ExaoneRotaryEmbedding(nn.Module): def __init__( self, dims: int, max_position_embeddings: int = 2048, traditional: bool = False, base: float = 10000, scale: float = 1.0, rope_type: str = "default", rope_scaling: Optional[Dict[str, Union[float, str]]] = None, ): super().__init__() self.dims = dims self.max_position_embeddings = max_position_embeddings self.traditional = traditional self.scale = scale self.rope_type = rope_type self.rope_scaling = rope_scaling self.base = base def __call__(self, x, offset: int = 0): return mx.fast.rope( x, self.dims, traditional=self.traditional, base=self.base, scale=self.scale, offset=offset, freqs=None, ) def initialize_rope(args: ModelArgs): head_dim = args.head_dim or (args.hidden_size // args.num_attention_heads) rope_scaling = args.rope_scaling rope_type = "default" rope_scale = 1.0 if rope_scaling is not None: rope_type = rope_scaling.get("type") or rope_scaling.get("rope_type", "default") if rope_type == "linear": rope_scale = 1 / rope_scaling["factor"] elif rope_type in ["llama3", "dynamic"]: rope_scale = 1.0 return ExaoneRotaryEmbedding( dims=head_dim, max_position_embeddings=args.max_position_embeddings or 2048, traditional=args.rope_traditional, base=args.rope_theta, scale=rope_scale, rope_type=rope_type, rope_scaling=rope_scaling, ) class AttentionModule(nn.Module): # This module corresponds to "attention" inside "attn" def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads self.n_kv_heads = n_kv_heads = args.num_key_value_heads self.head_dim = head_dim = args.head_dim or (dim // n_heads) self.scale = head_dim ** -0.5 # Match naming exactly: q_proj, k_proj, v_proj, out_proj self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) self.out_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias) self.rope = initialize_rope(args) self.attention_dropout = args.attention_dropout def __call__(self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None) -> mx.array: B, L, D = x.shape q = self.q_proj(x).reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) k = self.k_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) v = self.v_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: q = self.rope(q, offset=cache.offset) k = self.rope(k, offset=cache.offset) k, v = cache.update_and_fetch(k, v) else: q = self.rope(q) k = self.rope(k) out = scaled_dot_product_attention(q, k, v, cache=cache, scale=self.scale, mask=mask) out = out.transpose(0, 2, 1, 3).reshape(B, L, D) return self.out_proj(out) class Attention(nn.Module): # This corresponds to "attn" module that contains "attention" def __init__(self, args: ModelArgs): super().__init__() self.attention = AttentionModule(args) class MLP(nn.Module): # This corresponds to "mlp" module that contains c_fc_0, c_fc_1, c_proj def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size hidden_dim = args.intermediate_size self.c_fc_0 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias) self.c_fc_1 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias) self.c_proj = nn.Linear(hidden_dim, dim, bias=args.mlp_bias) def __call__(self, x: mx.array) -> mx.array: return self.c_proj(nn.silu(self.c_fc_0(x)) * self.c_fc_1(x)) class TransformerBlock(nn.Module): # A single layer: transformer.h. # contains: ln_1, attn, ln_2, mlp def __init__(self, args: ModelArgs): super().__init__() self.ln_1 = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.attn = Attention(args) self.ln_2 = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.mlp = MLP(args) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: h = x + self.attn.attention(self.ln_1(x), mask, cache) out = h + self.mlp(self.ln_2(h)) return out class ExaoneModel(nn.Module): # top-level: transformer # contains: wte, h, ln_f def __init__(self, args: ModelArgs): super().__init__() # all these must be attributes of self.transformer to have "transformer." prefix self.wte = nn.Embedding(args.vocab_size, args.hidden_size) self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)] self.ln_f = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.embed_dropout = args.embed_dropout def __call__( self, inputs: mx.array, cache=None, ): h = self.wte(inputs) #h = nn.dropout(h, p=self.embed_dropout) mask = create_attention_mask(h, cache) if cache is None: cache = [None] * len(self.h) for (layer, c) in zip(self.h, cache): h = layer(h, mask, cache=c) return self.ln_f(h) class Model(nn.Module): # The final model, containing `transformer` and optionally `lm_head` def __init__(self, args: ModelArgs): super().__init__() self.args = args self.transformer = ExaoneModel(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): out = self.transformer(inputs, cache) if self.args.tie_word_embeddings: # tie_word_embeddings means lm_head shares weight with wte out = self.transformer.wte.as_linear(out) else: out = self.lm_head(out) return out def sanitize(self, weights): return {k: v for k, v in weights.items()} @property def layers(self): return self.transformer.h