import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, KVCache, create_attention_mask from .su_rope import SuScaledRotaryEmbedding @dataclass class ModelArgs(BaseModelArgs): model_type: str = "phimoe" vocab_size: int = 30000 hidden_size: int = 1024 intermediate_size: int = 4096 num_hidden_layers: int = 12 num_attention_heads: int = 16 num_key_value_heads: int = 16 max_position_embeddings: int = 2048 initializer_range: float = 0.02 rms_norm_eps: float = 1e-6 pad_token_id: Optional[int] = None rope_traditional: bool = False num_local_experts: int = 8 num_experts_per_tok: int = 2 attention_bias: bool = False rope_theta: float = 10000.0 def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads if self.rope_scaling: required_keys = {"long_factor", "type"} if not all(key in self.rope_scaling for key in required_keys): raise ValueError(f"rope_scaling must contain keys {required_keys}") if self.rope_scaling["type"] not in ["longrope", "su", "linear"]: print( "[WARNING] rope_scaling 'type' currently only supports 'linear', 'su', and 'longrope'; setting rope scaling to false." ) self.rope_scaling = None class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads assert args.num_key_value_heads is not None self.n_kv_heads = n_kv_heads = args.num_key_value_heads head_dim = args.hidden_size // n_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) rope_scale = 1.0 if args.rope_scaling and args.rope_scaling["type"] in ["longrope", "su"]: self.rope = SuScaledRotaryEmbedding( head_dim, traditional=False, base=args.rope_theta, scale=rope_scale, max_position_embeddings=args.max_position_embeddings, original_max_position_embeddings=args.original_max_position_embeddings, short_factor=args.rope_scaling["short_factor"], long_factor=args.rope_scaling["long_factor"], ) else: if args.rope_scaling and args.rope_scaling["type"] == "linear": assert isinstance(args.rope_scaling["factor"], float) rope_scale = 1 / args.rope_scaling["factor"] self.rope = nn.RoPE( head_dim, traditional=args.rope_traditional, base=args.rope_theta, scale=rope_scale, ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[KVCache] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class PhiMoEBlockSparseTop2MLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.ffn_dim = args.intermediate_size self.hidden_dim = args.hidden_size self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.act_fn = nn.GELU() def __call__(self, hidden_states): current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3( hidden_states ) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states class PhiMoESparseMoeBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_dim = args.hidden_size self.ffn_dim = args.intermediate_size self.num_experts = args.num_local_experts self.top_k = args.num_experts_per_tok self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) self.experts = [PhiMoEBlockSparseTop2MLP(args) for _ in range(self.num_experts)] def __call__(self, hidden_states): batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.reshape(-1, hidden_dim) router_logits = self.gate(hidden_states) routing_weights = mx.softmax(router_logits, axis=-1) expert_indices = mx.argmax(routing_weights, axis=-1) final_hidden_states = mx.zeros((batch_size * sequence_length, hidden_dim)) for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] expert_mask = expert_indices == expert_idx if mx.sum(expert_mask) > 0: expert_input = hidden_states[expert_mask] expert_output = expert_layer(expert_input) final_hidden_states = mx.where( expert_mask[:, None], expert_output, final_hidden_states ) final_hidden_states = final_hidden_states.reshape( batch_size, sequence_length, hidden_dim ) return final_hidden_states, router_logits class PhiMoEDecoderLayer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.self_attn = Attention(args) self.block_sparse_moe = PhiMoESparseMoeBlock(args) self.input_layernorm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = nn.LayerNorm( args.hidden_size, eps=args.rms_norm_eps ) def __call__(self, hidden_states, attention_mask=None, position_ids=None): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, router_logits = self.block_sparse_moe(hidden_states) hidden_states = residual + hidden_states return hidden_states, router_logits class PhiMoEModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.padding_idx = args.pad_token_id self.vocab_size = args.vocab_size self.embed_tokens = nn.Embedding( args.vocab_size, args.hidden_size, self.padding_idx ) self.layers = [PhiMoEDecoderLayer(args) for _ in range(args.num_hidden_layers)] self.norm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__(self, input_ids, attention_mask=None, position_ids=None): hidden_states = self.embed_tokens(input_ids) for layer in self.layers: hidden_states, _ = layer(hidden_states, attention_mask, position_ids) hidden_states = self.norm(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model = PhiMoEModel(args) self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, input_ids, attention_mask=None, position_ids=None): hidden_states = self.model(input_ids, attention_mask, position_ids) logits = self.lm_head(hidden_states) return logits @property def layers(self): return self.model.layers @property def head_dim(self): return self.args.hidden_size // self.args.num_attention_heads def sanitize(self, weights): # Remove unused precomputed rotary freqs return { k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k } @property def n_kv_heads(self): return self.args.num_key_value_heads