import math from dataclasses import dataclass, field from typing import Tuple, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .cache import MambaCache @dataclass class ModelArgs(BaseModelArgs): num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool time_step_min: float time_step_max: float time_step_floor: float rescale_prenorm_residual: bool rms_norm: bool chunk_size: int tie_word_embeddings: bool use_cache: bool = True time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) time_step_rank: Union[int, str] = "auto" model_type: str = "mamba2" def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states def silu(x): return x * mx.sigmoid(x) def ssd(x, A, B, C, chunk_size): batch, seqlen, nheads, dim = x.shape B = mx.expand_dims(B, axis=2) C = mx.expand_dims(C, axis=2) state = mx.zeros((batch, nheads, dim, B.shape[-1])) outputs = [] for i in range(0, seqlen, chunk_size): chunk = slice(i, min(i + chunk_size, seqlen)) dA = mx.exp(mx.expand_dims(A[chunk], axis=0)) dBx = mx.einsum('blhp,bln->bhpn', x[:, chunk], B[:, chunk]) state = state * mx.expand_dims(dA, axis=-1) + dBx y = mx.einsum('bhpn,bln->blhp', state, C[:, chunk]) outputs.append(y) return mx.concatenate(outputs, axis=1), state class DepthWiseConv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.groups = groups if groups is not None else in_channels assert in_channels == out_channels, "In and out channels must be same for depthwise convolution" assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution" # Initialize with shape (channels, 1, kernel_size) to match pretrained weights self.weight = mx.random.normal((in_channels, 1, kernel_size)) self.bias = mx.zeros((out_channels,)) if bias else None def __call__(self, x: mx.array, cache=None, cache_idx: int = 0) -> mx.array: B, L, C = x.shape K = self.kernel_size # Handle padding and caching if cache is not None: conv_cache = cache[cache_idx] if conv_cache is not None: x = mx.concatenate([conv_cache, x], axis=1) L = x.shape[1] # Update L after concatenation else: pad_left = K - 1 x = mx.pad(x, [(0, 0), (pad_left, 0), (0, 0)]) L = x.shape[1] # Update L after padding # Implement depthwise convolution manually for each channel outputs = [] for c in range(C): # Extract single channel and reshape for 1D convolution x_c = x[:, :, c] # Shape: [B, L] x_c = mx.expand_dims(x_c, axis=1) # Shape: [B, 1, L] # Extract and ensure filter is 3D w_c = self.weight[c] # Shape: [1, kernel_size] or [1, 1, kernel_size] if w_c.ndim == 2: w_c = mx.expand_dims(w_c, axis=0) # Shape: [1, 1, kernel_size] elif w_c.ndim == 1: w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0) # For inference mode (single token), adjust the input if L < K: # Pad input to match kernel size pad_size = K - L x_c = mx.pad(x_c, [(0, 0), (0, 0), (pad_size, 0)]) # Apply 1D convolution for this channel y_c = mx.conv_general( x_c, w_c, stride=1, padding=0 # We've already handled padding ) if self.bias is not None: y_c = y_c + self.bias[c] outputs.append(mx.squeeze(y_c, axis=1)) # Shape: [B, 1] # Stack all channel outputs y = mx.stack(outputs, axis=-1) # Shape: [B, L', C] if cache is not None: # Update cache with the most recent K-1 tokens cache[cache_idx] = x[:, -(K-1):, :] if L >= K else x return y class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias) conv_dim = args.intermediate_size + 2 * args.state_size self.conv1d = DepthWiseConv1d( in_channels=conv_dim, out_channels=conv_dim, kernel_size=args.conv_kernel, groups=conv_dim, bias=args.use_conv_bias, padding=args.conv_kernel - 1 ) self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range self.D = mx.random.normal((args.num_heads,)) * args.initializer_range self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias) if args.rescale_prenorm_residual: layer_scale = math.sqrt(1.0 / args.num_hidden_layers) self.out_proj.weight = self.out_proj.weight * layer_scale def __call__(self, u: mx.array, cache = None): if cache is not None and self.args.use_cache: return self.step(u, cache) A = -mx.exp(self.A_log) zxbcdt = self.in_proj(u) splits = [ self.args.intermediate_size, self.args.intermediate_size + 2 * self.args.state_size, self.args.num_heads, ] z, xBC, dt = mx.split(zxbcdt, splits, axis=-1) dt = mx.clip( nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max ) dt = mx.maximum(dt, self.args.time_step_floor) xBC = silu(self.conv1d(xBC)) xBC_parts = mx.split( xBC, [self.args.intermediate_size, self.args.state_size, self.args.state_size], axis=-1 ) x = xBC_parts[0] B = xBC_parts[1] C = xBC_parts[2] # Replace rearrange with reshape and transpose b, l, hp = x.shape h = self.args.num_heads p = hp // h x = mx.reshape(x, (b, l, h, p)) y, ssm_state = ssd( x * mx.expand_dims(dt, -1), A * dt, B, C, self.args.chunk_size ) y = y + x * mx.expand_dims(self.D, -1) # Replace rearrange with reshape y = mx.reshape(y, (b, l, h * p)) y = self.norm(y + z) y = self.out_proj(y) if cache is not None and self.args.use_cache: cache[1] = ssm_state if self.args.residual_in_fp32: y = mx.cast(y, mx.float32) return y def step(self, u: mx.array, cache: MambaCache): batch_size = u.shape[0] seq_len = u.shape[1] outputs = [] # Initialize SSM state if needed if cache[1] is None: cache[1] = mx.zeros(( batch_size, self.args.num_heads, self.args.head_dim, self.args.state_size )) for pos in range(seq_len): # Get single token u_t = u[:, pos:pos+1, :] # Project input zxbcdt = self.in_proj(u_t) # Calculate sizes d_model = self.args.intermediate_size d_state = self.args.state_size n_heads = self.args.num_heads d_head = self.args.head_dim # Correct splits for z, xBC, dt splits = [ d_model, # z size d_model + 2 * d_state, # xBC size (delta, B, C) n_heads # dt size ] # Split the projected input z = zxbcdt[:, :, :splits[0]] xBC = zxbcdt[:, :, splits[0]:splits[0] + splits[1]] dt = zxbcdt[:, :, -splits[2]:] # Take last n_heads elements # Process dt dt = mx.reshape(dt, (batch_size, n_heads)) dt = mx.clip( nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max ) dt = mx.maximum(dt, self.args.time_step_floor) # Process convolution xBC = self.conv1d(xBC, cache=cache, cache_idx=0) xBC = silu(xBC) # Split convolved xBC into x, B, C x = xBC[:, :, :d_model] B = xBC[:, :, d_model:d_model + d_state] C = xBC[:, :, -d_state:] # Reshape x into (batch, heads, dim) x = mx.reshape(x, (batch_size, 1, n_heads, d_head)) x = mx.squeeze(x, axis=1) # (batch, heads, dim) # Reshape B into (batch, heads, dim, state) B = mx.reshape(B, (batch_size, 1, d_state)) B = mx.broadcast_to(B, (batch_size, n_heads, d_state)) B = mx.expand_dims(B, axis=2) # (batch, heads, 1, state) # Reshape C for later use C = mx.reshape(C, (batch_size, 1, d_state)) C = mx.broadcast_to(C, (batch_size, n_heads, d_state)) C = mx.expand_dims(C, axis=3) # (batch, heads, state, 1) # Compute SSM updates A = -mx.exp(self.A_log) dA = mx.exp(dt * mx.expand_dims(A, 0)) dA = mx.expand_dims(mx.expand_dims(dA, -1), -1) # (batch, heads, 1, 1) # Prepare x for Bx computation x = mx.expand_dims(x, axis=3) # (batch, heads, dim, 1) # Compute dBx with proper broadcasting dBx = mx.matmul(x, B) # (batch, heads, dim, state) # Update state ssm_state = cache[1] # (batch, heads, dim, state) ssm_state = ssm_state * dA + dBx cache[1] = ssm_state # Compute output y = mx.matmul(ssm_state, C) # (batch, heads, dim, 1) y = mx.squeeze(y, axis=-1) # (batch, heads, dim) # Add skip connection with D y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1) # Reshape to original dimensions y = mx.reshape(y, (batch_size, 1, n_heads * d_head)) # Apply norm and output projection y = self.norm(y + z) y = self.out_proj(y) if self.args.residual_in_fp32: y.astype(mx.float32) outputs.append(y) return mx.concatenate(outputs, axis=1) class ResidualBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.mixer = Mamba2Block(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): return self.mixer(self.norm(x), cache) + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, x: mx.array, cache): x = self.embeddings(x) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): x = layer(x, c) return self.norm_f(x) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): B, T = inputs.shape x = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(x) else: logits = self.lm_head(x) print('ouput') return logits def make_cache(self): return [MambaCache() for _ in range(len(self.layers))] def sanitize(self, weights): sanitized = {} for k, v in weights.items(): if "conv1d.weight" in k: # Ensure weights are in correct shape (channels, 1, kernel_size) if v.ndim == 2: v = mx.expand_dims(v, axis=1) elif v.ndim == 1: v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0) sanitized[k] = v else: sanitized[k] = v return sanitized @property def layers(self): return self.backbone.layers