from dataclasses import dataclass from typing import Any, Optional, Tuple import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention @dataclass class ModelArgs(BaseModelArgs): hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int num_key_value_heads: int rms_norm_eps: float vocab_size: int attention_bias: bool head_dim: int max_position_embeddings: int mlp_bias: bool model_type: str rope_theta: float tie_word_embeddings: bool class HeliumAttention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.hidden_size self.n_heads = n_heads = args.num_attention_heads assert args.num_key_value_heads is not None self.n_kv_heads = n_kv_heads = args.num_key_value_heads head_dim = args.hidden_size // n_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias) self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias) self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class HeliumMLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.intermediate_size = args.intermediate_size self.gate_proj = nn.Linear( self.hidden_size, self.intermediate_size, bias=args.mlp_bias ) self.up_proj = nn.Linear( self.hidden_size, self.intermediate_size, bias=args.mlp_bias ) self.down_proj = nn.Linear( self.intermediate_size, self.hidden_size, bias=args.mlp_bias ) def __call__(self, x: mx.array) -> mx.array: return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) class HeliumDecoderLayer(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.hidden_size = args.hidden_size self.self_attn = HeliumAttention(args) self.mlp = HeliumMLP(args) self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) self.post_attention_layernorm = nn.RMSNorm( args.hidden_size, eps=args.rms_norm_eps ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class HeliumModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.num_hidden_layers = args.num_hidden_layers self.vocab_size = args.vocab_size assert self.vocab_size > 0 self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [HeliumDecoderLayer(args) for _ in range(args.num_hidden_layers)] self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ) -> mx.array: h = self.embed_tokens(inputs) if mask is None: mask = create_attention_mask(h, cache) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.model = HeliumModel(args) self.vocab_size = args.vocab_size self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, mask: mx.array = None, cache=None, ) -> mx.array: out = self.model(inputs, mask, cache) if self.args.tie_word_embeddings: out = self.model.embed_tokens.as_linear(out) else: out = self.lm_head(out) return out @property def layers(self): return self.model.layers