from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn import numpy as np from .base import BaseModelArgs, create_additive_causal_mask @dataclass class ModelArgs(BaseModelArgs): model_type: str n_ctx: int n_embd: int n_head: int n_layer: int n_positions: int layer_norm_epsilon: float vocab_size: int num_key_value_heads: int = None def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.n_head class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() assert args.n_embd % args.n_head == 0, "n_embd must be divisible by n_head" self.n_embd = args.n_embd self.n_head = args.n_head self.head_dim = self.n_embd // self.n_head self.scale = self.head_dim**-0.5 self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=True) self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=True) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape qkv = self.c_attn(x) queries, keys, values = mx.split(qkv, 3, axis=-1) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3) if cache is not None: keys, values = cache.update_and_fetch(keys, values) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.c_proj(output) class MLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_embd = args.n_embd self.c_fc = nn.Linear(self.n_embd, 4 * self.n_embd) self.c_proj = nn.Linear(4 * self.n_embd, self.n_embd) def __call__(self, x) -> mx.array: return self.c_proj(nn.gelu_approx(self.c_fc(x))) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_head = args.n_head self.n_embd = args.n_embd self.layer_norm_epsilon = args.layer_norm_epsilon self.attn = Attention(args) self.mlp = MLP(args) self.ln_1 = nn.LayerNorm( self.n_embd, eps=self.layer_norm_epsilon, ) self.ln_2 = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r = self.attn(self.ln_1(x), mask, cache) h = x + r r = self.mlp(self.ln_2(h)) out = h + r return out class GPT2Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_embd = args.n_embd self.n_positions = args.n_positions self.vocab_size = args.vocab_size self.n_layer = args.n_layer self.layer_norm_epsilon = args.layer_norm_epsilon assert self.vocab_size > 0 self.wte = nn.Embedding(self.vocab_size, self.n_embd) self.wpe = nn.Embedding(self.n_positions, self.n_embd) self.h = [TransformerBlock(args=args) for _ in range(self.n_layer)] self.ln_f = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon) def __call__( self, inputs: mx.array, cache=None, ): _, L = inputs.shape hidden_states = self.wte(inputs) mask = None if hidden_states.shape[1] > 1: position_ids = mx.array(np.arange(L)) hidden_states += self.wpe(position_ids) mask = create_additive_causal_mask( hidden_states.shape[1], cache[0].offset if cache is not None else 0 ) mask = mask.astype(hidden_states.dtype) if cache is None: cache = [None] * len(self.h) for layer, c in zip(self.h, cache): hidden_states = layer(hidden_states, mask, cache=c) return self.ln_f(hidden_states) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.model = GPT2Model(args) def __call__( self, inputs: mx.array, cache=None, ): out = self.model(inputs, cache) out = self.model.wte.as_linear(out) return out def sanitize(self, weights): new_weights = {} for i in range(self.args.n_layer): if f"h.{i}.attn.bias" in weights: del weights[f"h.{i}.attn.bias"] if f"h.{i}.attn.c_attn.weight" in weights: weights[f"h.{i}.attn.c_attn.weight"] = weights[ f"h.{i}.attn.c_attn.weight" ].transpose(1, 0) if f"h.{i}.attn.c_proj.weight" in weights: weights[f"h.{i}.attn.c_proj.weight"] = weights[ f"h.{i}.attn.c_proj.weight" ].transpose(1, 0) if f"h.{i}.mlp.c_fc.weight" in weights: weights[f"h.{i}.mlp.c_fc.weight"] = weights[ f"h.{i}.mlp.c_fc.weight" ].transpose(1, 0) if f"h.{i}.mlp.c_proj.weight" in weights: weights[f"h.{i}.mlp.c_proj.weight"] = weights[ f"h.{i}.mlp.c_proj.weight" ].transpose(1, 0) for weight in weights: if not weight.startswith("model."): new_weights[f"model.{weight}"] = weights[weight] else: new_weights[weight] = weights[weight] return new_weights @property def layers(self): return self.model.h @property def head_dim(self): return self.args.n_embd // self.args.n_head @property def n_kv_heads(self): return self.args.num_key_value_heads