from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn import numpy as np from .base import BaseModelArgs, create_additive_causal_mask @dataclass class ModelArgs(BaseModelArgs): model_type: str n_embd: int n_layer: int n_inner: int n_head: int n_positions: int layer_norm_epsilon: float vocab_size: int num_key_value_heads: int = None multi_query: bool = True attention_bias: bool = True mlp_bias: bool = True tie_word_embeddings: bool = True def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = 1 if self.multi_query else self.n_head class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.dim = dim = args.n_embd self.n_heads = n_heads = args.n_head self.n_kv_heads = n_kv_heads = 1 if args.multi_query else args.n_head self.head_dim = head_dim = dim // n_heads self.kv_dim = n_kv_heads * head_dim self.scale = head_dim**-0.5 if hasattr(args, "attention_bias"): attention_bias = args.attention_bias else: attention_bias = False self.c_attn = nn.Linear(dim, dim + 2 * self.kv_dim, bias=attention_bias) self.c_proj = nn.Linear(dim, dim, bias=attention_bias) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape qkv = self.c_attn(x) queries, keys, values = mx.split( qkv, [self.dim, self.dim + self.kv_dim], axis=-1 ) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: keys, values = cache.update_and_fetch(keys, values) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.c_proj(output) class MLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() dim = args.n_embd hidden_dim = args.n_inner if hasattr(args, "mlp_bias"): mlp_bias = args.mlp_bias else: mlp_bias = False self.c_fc = nn.Linear(dim, hidden_dim, bias=mlp_bias) self.c_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias) def __call__(self, x) -> mx.array: return self.c_proj(nn.gelu(self.c_fc(x))) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.n_head = args.n_head self.n_embd = args.n_embd self.attn = Attention(args) self.mlp = MLP(args) self.ln_1 = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon) self.ln_2 = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon) self.args = args def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r = self.attn(self.ln_1(x), mask, cache) h = x + r r = self.mlp(self.ln_2(h)) out = h + r return out class GPTBigCodeModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.vocab_size = args.vocab_size assert self.vocab_size > 0 self.wte = nn.Embedding(args.vocab_size, args.n_embd) self.wpe = nn.Embedding(args.n_positions, args.n_embd) self.h = [TransformerBlock(args=args) for _ in range(args.n_layer)] self.ln_f = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon) def __call__( self, inputs: mx.array, cache=None, ): B, L = inputs.shape hidden_states = self.wte(inputs) mask = None if hidden_states.shape[1] > 1: position_ids = mx.array(np.arange(L)) hidden_states += self.wpe(position_ids) mask = create_additive_causal_mask( hidden_states.shape[1], cache[0].offset if cache is not None else 0 ) mask = mask.astype(hidden_states.dtype) if cache is None: cache = [None] * len(self.h) for layer, c in zip(self.h, cache): hidden_states = layer(hidden_states, mask, cache=c) return self.ln_f(hidden_states) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.transformer = GPTBigCodeModel(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.n_embd, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): out = self.transformer(inputs, cache) if self.args.tie_word_embeddings: out = self.transformer.wte.as_linear(out) else: out = self.lm_head(out) return out @property def layers(self): return self.transformer.h @property def head_dim(self): return self.args.n_embd // self.args.n_head @property def n_kv_heads(self): return self.args.num_key_value_heads