from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn import numpy as np from .base import BaseModelArgs, create_additive_causal_mask @dataclass class ParamsArgs(BaseModelArgs): dim: int ffn_type: str n_heads: int n_layers: int norm_eps: float positional_embedding_type: str post_embed_norm: bool qk_norm: bool vocab_size: int weight_tying: bool @dataclass class ModelArgs(BaseModelArgs): model_type: str params_args_dict: ParamsArgs class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.dim = args.dim self.n_heads = args.n_heads self.head_dim = self.dim // self.n_heads self.qk_norm = args.qk_norm self.scale = self.head_dim**-0.5 self.in_proj = nn.Linear(self.dim, 3 * self.dim, bias=False) self.out_proj = nn.Linear(self.dim, self.dim, bias=False) if self.qk_norm: self.q_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False) self.k_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False) self.rope = nn.RoPE( self.head_dim, traditional=False, ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: B, L, D = x.shape queries, keys, values = self.in_proj(x).split(3, axis=-1) if self.qk_norm: queries = self.q_norm(queries) keys = self.q_norm(keys) queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) output = mx.fast.scaled_dot_product_attention( queries, keys, values, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.out_proj(output) class MLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() # https://github.com/mlfoundations/open_lm/blob/c65b43042ff31c0fe26f930decf1ccab1b03ab4b/open_lm/model.py#L254C2-L254C3 hidden_dim = 256 * ((int(2 * 4 * args.dim / 3) + 256 - 1) // 256) self.w12 = nn.Linear(args.dim, 2 * hidden_dim, bias=False) self.w3 = nn.Linear(hidden_dim, args.dim, bias=False) def __call__(self, x) -> mx.array: gate, x = self.w12(x).split(2, axis=-1) return self.w3(nn.silu(gate) * x) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.attention = Attention(args) self.feed_forward = MLP(args) self.ffn_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False) self.attention_norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> mx.array: r = self.attention(self.attention_norm(x), mask, cache) h = x + r r = self.feed_forward(self.ffn_norm(h)) out = h + r return out class OpenLM(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim) self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)] self.norm = nn.LayerNorm(args.dim, eps=args.norm_eps, bias=False) self.output = nn.Linear(args.dim, args.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache=None, ): _, L = inputs.shape h = self.tok_embeddings(inputs) mask = None if h.shape[1] > 1: mask = create_additive_causal_mask( h.shape[1], cache[0].offset if cache is not None else 0 ) mask = mask.astype(h.dtype) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, cache=c) return self.output(self.norm(h)) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() args.params_args_dict = ParamsArgs.from_dict(args.params_args_dict) self.args = args.params_args_dict self.model_type = args.model_type self.model = OpenLM(self.args) def __call__( self, inputs: mx.array, cache=None, ): out = self.model(inputs, cache) return out def sanitize(self, weights): # Remove unused precomputed rotary freqs return {k: v for k, v in weights.items() if "inv_freq" not in k} @property def layers(self): return self.model.layers @property def head_dim(self): return self.args.dim // self.args.n_heads @property def n_kv_heads(self): return self.args.n_heads