import math from dataclasses import dataclass, field from typing import Tuple, Union, Optional import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs from .cache import MambaCache @dataclass class ModelArgs(BaseModelArgs): num_heads: int head_dim: int vocab_size: int hidden_size: int state_size: int num_hidden_layers: int layer_norm_epsilon: float expand: int conv_kernel: int n_groups: int use_bias: bool use_conv_bias: bool initializer_range: float residual_in_fp32: bool time_step_min: float time_step_max: float time_step_floor: float rescale_prenorm_residual: bool rms_norm: bool chunk_size: int tie_word_embeddings: bool use_cache: bool = True time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf"))) time_step_rank: Union[int, str] = "auto" model_type: str = "mamba2" def __post_init__(self): if not hasattr(self, "intermediate_size"): self.intermediate_size = int(self.expand * self.hidden_size) if not hasattr(self, "head_dim"): self.head_dim = self.hidden_size // self.num_heads if self.time_step_rank == "auto": self.time_step_rank = math.ceil(self.hidden_size / 16) class MambaRMSNormGated(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = mx.ones((hidden_size,)) self.variance_epsilon = eps def __call__(self, hidden_states, gate=None): if gate is not None: hidden_states = hidden_states * nn.silu(gate) variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states def silu(x): return x * mx.sigmoid(x) def ssd(x, A, B, C, chunk_size): # Not getting used batch, seqlen, nheads, dim = x.shape B = mx.expand_dims(B, axis=2) C = mx.expand_dims(C, axis=2) state = mx.zeros((batch, nheads, dim, B.shape[-1])) outputs = [] for i in range(0, seqlen, chunk_size): chunk = slice(i, min(i + chunk_size, seqlen)) dA = mx.exp(mx.expand_dims(A[chunk], axis=0)) # Replace einsum with explicit operations x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim] x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size] B_chunk = B[:, chunk] # [batch, chunk_size, state_size] dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size] state = state * mx.expand_dims(dA, axis=-1) + dBx # Replace einsum with explicit operations C_chunk = C[:, chunk] # [batch, chunk_size, state_size] y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size] y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim] outputs.append(y) return mx.concatenate(outputs, axis=1), state class Mamba2Block(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.chunk_size = args.chunk_size d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias) self.conv_dim = args.intermediate_size + 2 * args.state_size # Replace DepthWiseConv1d with grouped nn.Conv1d self.conv1d = nn.Conv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, kernel_size=args.conv_kernel, groups=self.conv_dim, # Makes it depthwise bias=args.use_conv_bias, padding=0 # We'll handle padding via cache ) self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range self.D = mx.random.normal((args.num_heads,)) * args.initializer_range self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon) self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias) if args.rescale_prenorm_residual: layer_scale = math.sqrt(1.0 / args.num_hidden_layers) self.out_proj.weight = self.out_proj.weight * layer_scale def __call__(self, u: mx.array, cache: Optional[MambaCache] = None): batch_size, seq_len, _ = u.shape pad_size = self.chunk_size - (seq_len % self.chunk_size) # Initialize cache if needed if cache is None: cache = MambaCache() # Initialize states if needed if cache[0] is None: # conv state cache[0] = mx.zeros(( batch_size, self.args.conv_kernel - 1, self.conv_dim )) if cache[1] is None: # ssm state cache[1] = mx.zeros(( batch_size, self.args.num_heads, self.args.head_dim, self.args.state_size )) # Project input zxbcdt = self.in_proj(u) # Split projections z = zxbcdt[:, :, :self.args.intermediate_size] xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size] dt = zxbcdt[:, :, -(self.args.num_heads):] # Process delta time dt = mx.reshape(dt, (batch_size, seq_len, self.args.num_heads)) dt = mx.squeeze(dt, axis=0) dt = mx.clip( nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max ) dt = mx.maximum(dt, self.args.time_step_floor) # Handle convolution caching and padding conv_state = cache[0] if conv_state is not None: xBC = mx.concatenate([conv_state, xBC], axis=1) # Prepare input for conv1d: [B, C, L] xBC = mx.transpose(xBC, [0, 2, 1]) # Apply convolution xBC = self.conv1d(xBC) # Update cache state cache[0] = mx.transpose(xBC, [0, 2, 1])[:, -self.args.conv_kernel+1:, :] # Return to [B, L, C] format xBC = mx.transpose(xBC, [0, 2, 1]) xBC = silu(xBC) # Split conv output x = xBC[:, :, :self.args.intermediate_size] B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size] C = xBC[:, :, -self.args.state_size:] # Reshape for SSM x = mx.reshape(x, (batch_size, seq_len, self.args.num_heads, self.args.head_dim)) B = mx.reshape(B, (batch_size, seq_len, self.args.state_size)) B = mx.broadcast_to(B, (batch_size, self.args.num_heads, self.args.state_size)) C = mx.reshape(C, (batch_size, seq_len, self.args.state_size)) C = mx.broadcast_to(C, (batch_size, self.args.num_heads, self.args.state_size)) # SSM state update ssm_state = cache[1] A = -mx.exp(self.A_log) dA = mx.exp(dt * mx.expand_dims(A, 0)) x = mx.expand_dims(x, axis=-1) dBx = mx.matmul(x, mx.expand_dims(B, axis=-2)) new_ssm_state = ssm_state * mx.expand_dims(dA, -1) + dBx cache[1] = new_ssm_state # Output computation y = mx.matmul(new_ssm_state, mx.expand_dims(C, axis=-1)) y = mx.squeeze(y, axis=-1) if pad_size > 0: y = y[:, :seq_len, :, :] # Final reshape and projections y = mx.reshape(y, (batch_size, seq_len, -1)) y = self.norm(y + z) return self.out_proj(y) class ResidualBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.residual_in_fp32 = args.residual_in_fp32 self.mixer = Mamba2Block(args) self.norm = nn.RMSNorm(args.hidden_size) def __call__(self, x: mx.array, cache): if self.residual_in_fp32: x = x.astype(mx.float32) return self.mixer(self.norm(x), cache) + x class Mamba2(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size) self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)] self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, x: mx.array, cache): x = self.embeddings(x) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): x = layer(x, c) return self.norm_f(x) class Model(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.args = args self.model_type = args.model_type self.backbone = Mamba2(args) if not args.tie_word_embeddings: self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) def __call__(self, inputs: mx.array, cache=None): B, T = inputs.shape x = self.backbone(inputs, cache) if self.args.tie_word_embeddings: logits = self.backbone.embeddings.as_linear(x) else: logits = self.lm_head(x) return logits def make_cache(self, batch_size=1): return [MambaCache() for _ in range(len(self.backbone.layers))] def sanitize(self, weights): for k, v in weights.items(): if "conv1d.weight" in k and v.shape[-1] != 1: weights[k] = v.moveaxis(2, 1) return weights @property def layers(self): return self.backbone.layers