# Copyright © 2023-2024 Apple Inc. from dataclasses import dataclass from typing import Any, Optional import mlx.core as mx import mlx.nn as nn import numpy as np from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int num_hidden_layers: int intermediate_size: int num_attention_heads: int rms_norm_eps: float vocab_size: int n_shared_head: int = 8 rope_theta: float = 10000 rope_traditional: bool = False class Attention(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size head_dim = self.hidden_size // config.num_attention_heads self.q_num_heads = config.num_attention_heads self.qk_dim = self.v_dim = head_dim self.k_num_heads = self.v_num_heads = int( np.ceil(self.q_num_heads / config.n_shared_head) ) self.scale = head_dim**-0.5 self.q_proj = nn.Linear( self.hidden_size, self.q_num_heads * self.qk_dim, bias=False ) self.k_proj = nn.Linear( self.hidden_size, self.k_num_heads * self.qk_dim, bias=False ) self.v_proj = nn.Linear( self.hidden_size, self.v_num_heads * self.v_dim, bias=False ) self.o_proj = nn.Linear( self.q_num_heads * self.v_dim, self.hidden_size, bias=False ) self.rotary_emb = nn.RoPE( head_dim, traditional=config.rope_traditional, base=config.rope_theta, scale=1.0, ) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: bsz, q_len, _ = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) # Prepare the queries, keys and values for the attention computation queries = queries.reshape(bsz, q_len, self.q_num_heads, self.qk_dim).transpose( 0, 2, 1, 3 ) keys = keys.reshape(bsz, q_len, self.k_num_heads, self.qk_dim).transpose( 0, 2, 1, 3 ) values = values.reshape(bsz, q_len, self.v_num_heads, self.v_dim).transpose( 0, 2, 1, 3 ) if cache is not None: queries = self.rotary_emb(queries, offset=cache.offset) keys = self.rotary_emb(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rotary_emb(queries) keys = self.rotary_emb(keys) keys = mx.tile(keys, [1, self.config.n_shared_head, 1, 1]) values = mx.tile(values, [1, self.config.n_shared_head, 1, 1]) output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=attention_mask, ) output = output.transpose(0, 2, 1, 3).reshape(bsz, q_len, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) def __call__(self, x: mx.array) -> mx.array: return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) # type: ignore class PlamoDecoderLayer(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.self_attn = Attention(config) self.mlp = MLP(config) self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, cache: Optional[Any] = None, ): # from LlamaDecoder residual = hidden_states hidden_states = self.norm(hidden_states) # Self Attention hidden_states_sa = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, cache=cache, ) # Fully Connected hidden_states_mlp = self.mlp(hidden_states) hidden_states = residual + hidden_states_sa + hidden_states_mlp return hidden_states class PlamoDecoder(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.layers = [ PlamoDecoderLayer(config) for _ in range(config.num_hidden_layers) ] class PlamoModel(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = PlamoDecoder(config) # type: ignore self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def __call__( self, inputs: mx.array, cache: Optional[Any] = None, mask: Optional[mx.array] = None, ) -> mx.array: h = self.embed_tokens(inputs) if mask is None: mask = create_attention_mask(h, cache) if cache is None: cache = [None for _ in range(len(self.layers.layers))] for layer, c in zip(self.layers.layers, cache): h = layer(h, mask, cache=c) return self.norm(h) class Model(nn.Module): def __init__(self, args: ModelArgs) -> None: super().__init__() self.model_type = args.model_type self.model = PlamoModel(args) self.lm_head: nn.Module = nn.Linear( args.hidden_size, args.vocab_size, bias=False ) self.args = args def __call__( self, inputs: mx.array, cache: Optional[Any] = None, mask: Optional[mx.array] = None, ) -> mx.array: out = self.model(inputs, cache, mask) return self.lm_head(out) @property def layers(self): return self.model.layers.layers