from typing import Any, List, NamedTuple, Optional, Tuple, Union import mlx.core as mx import mlx.nn as nn import numpy as np from transformers import PretrainedConfig class DecoderInput(NamedTuple): hidden_states: mx.array position_ids: mx.array attention_mask: Optional[mx.array] = None past_key_values: Optional[List[mx.array]] = None output_hidden_states: Optional[bool] = False output_attentions: Optional[bool] = False use_cache: Optional[bool] = False gradient_checkpointing: bool = False class DecoderOutput(NamedTuple): hidden_states: mx.array all_hidden_states: Optional[Tuple[mx.array, ...]] all_self_attns: Optional[Tuple[mx.array, ...]] next_decoder_cache: Optional[Tuple[mx.array, ...]] class ModelArgs(PretrainedConfig): # type: ignore model_type: str = "plamo" def __init__( self, vocab_size: int = 32000, hidden_size: int = 4096, intermediate_size: int = 13312, num_hidden_layers: int = 32, num_attention_heads: int = 32, max_position_embeddings: int = 2048, initializer_range: float = 0.02, rms_norm_eps: float = 1e-6, use_cache: bool = True, tokenizer_class: str = "PlamoTokenizer", pad_token_id: Optional[int] = None, bos_token_id: int = 1, eos_token_id: int = 2, n_shared_head: int = 8, tie_word_embeddings: bool = False, **kwargs: Any, ) -> None: self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.n_shared_head = n_shared_head super().__init__( tokenizer_class=tokenizer_class, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) class RotaryEmbedding: def __init__( self, dim: int, max_position_embeddings: int = 2048, base: int = 10000 ) -> None: super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.inv_freq = 1.0 / mx.power( self.base, mx.arange(0, self.dim, 2, dtype=mx.float32) / self.dim ) self.cos_cached = mx.zeros((1, 1, max_position_embeddings, dim)) self.sin_cached = mx.zeros((1, 1, max_position_embeddings, dim)) self._set_cos_sin_cache(max_position_embeddings) def _set_cos_sin_cache(self, seq_len: int) -> None: self.max_seq_len_cached = seq_len t = mx.arange(self.max_seq_len_cached) # type: ignore freqs = mx.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = mx.concatenate((freqs, freqs), axis=-1) self.cos_cached = emb.cos()[None, None, :, :] self.sin_cached = emb.sin()[None, None, :, :] def __call__(self, x: mx.array, seq_len: int) -> Tuple[mx.array, mx.array]: # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len) return ( self.cos_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore self.sin_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore ) def _rotate_half(x: mx.array) -> mx.array: """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return mx.concatenate((-x2, x1), axis=-1) def _rotary_pos_emb( x: mx.array, cos: mx.array, sin: mx.array, position_ids: mx.array ) -> mx.array: # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = mx.squeeze(cos, (0, 1)) # [seq_len, dim] sin = mx.squeeze(sin, (0, 1)) # [seq_len, dim] cos = cos[position_ids][:, None] # [bs, 1, seq_len, dim] sin = sin[position_ids][:, None] # [bs, 1, seq_len, dim] x_embed = (x * cos) + (_rotate_half(x) * sin) return x_embed class RMSNorm(nn.Module): def __init__(self, dims: int, eps: float = 1e-5): super().__init__() self.weight = mx.ones((dims,)) self.variance_epsilon = eps def _norm(self, x): return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.variance_epsilon) def __call__(self, x): output = self._norm(x.astype(mx.float32)).astype(x.dtype) return self.weight * output class Attention(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size head_dim = self.hidden_size // config.num_attention_heads self.max_position_embeddings = config.max_position_embeddings self.q_num_heads = config.num_attention_heads self.qk_dim = self.v_dim = head_dim self.k_num_heads = self.v_num_heads = int( np.ceil(self.q_num_heads / config.n_shared_head) ) self.scale = head_dim**-0.5 self.q_proj = nn.Linear( self.hidden_size, self.q_num_heads * self.qk_dim, bias=False ) self.k_proj = nn.Linear( self.hidden_size, self.k_num_heads * self.qk_dim, bias=False ) self.v_proj = nn.Linear( self.hidden_size, self.v_num_heads * self.v_dim, bias=False ) self.o_proj = nn.Linear( self.q_num_heads * self.v_dim, self.hidden_size, bias=False ) self.rotary_emb = RotaryEmbedding( self.qk_dim, max_position_embeddings=self.max_position_embeddings ) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, position_ids: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> Tuple[mx.array, Tuple[mx.array, mx.array]]: bsz, q_len, _ = hidden_states.shape query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Prepare the queries, keys and values for the attention computation query_states = query_states.reshape( bsz, q_len, self.q_num_heads, self.qk_dim ).transpose(0, 2, 1, 3) key_states = key_states.reshape( bsz, q_len, self.k_num_heads, self.qk_dim ).transpose(0, 2, 1, 3) value_states = value_states.reshape( bsz, q_len, self.v_num_heads, self.v_dim ).transpose(0, 2, 1, 3) def _expand_kv(a: mx.array) -> mx.array: a = mx.concatenate( [mx.expand_dims(a, 1)] * self.config.n_shared_head, axis=1 ) return a.reshape([bsz, self.q_num_heads, q_len, -1]) # expand shared kv assert self.k_num_heads == self.v_num_heads key_states = _expand_kv(key_states) value_states = _expand_kv(value_states) kv_seq_len = key_states.shape[-2] if cache is not None: kv_seq_len += cache[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) assert position_ids is not None query_states = _rotary_pos_emb(query_states, cos, sin, position_ids) key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) if cache is not None: # reuse k, v, self_attention key_states = mx.concatenate([cache[0], key_states], axis=2) value_states = mx.concatenate([cache[1], value_states], axis=2) scores = (query_states * self.scale) @ key_states.transpose(0, 1, 3, 2) if attention_mask is not None: scores += attention_mask scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype) output = (scores @ value_states).transpose(0, 2, 1, 3).reshape(bsz, q_len, -1) return self.o_proj(output), (key_states, value_states) class MLP(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = nn.silu def __call__(self, x: mx.array) -> mx.array: return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # type: ignore class PlamoDecoderLayer(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.self_attn = Attention(config) self.mlp = MLP(config) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, position_ids: Optional[mx.array] = None, cache: Optional[Tuple[mx.array, mx.array]] = None, ) -> Tuple[Any, ...]: # from LlamaDecoder residual = hidden_states hidden_states = self.norm(hidden_states) # Self Attention hidden_states_sa, cache = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, cache=cache, ) # Fully Connected hidden_states_mlp = self.mlp(hidden_states) # Residual ("Parallel Layers" is used here, which is different from the normal residual connection) # See "GPT-NeoX-20B: An Open-Source Autoregressive Language Model" for Parallel Layers hidden_states = residual + hidden_states_sa + hidden_states_mlp return hidden_states, cache # type: ignore class PlamoDecoder(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.layers = [ PlamoDecoderLayer(config) for _ in range(config.num_hidden_layers) ] class PlamoModel(nn.Module): config_class = ModelArgs _no_split_modules: List[str] base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["PlamoDecoderLayer"] _skip_keys_device_placement = "past_key_values" _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] def __init__(self, config: ModelArgs): super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = PlamoDecoder(config) # type: ignore self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False def __call__( self, inputs: mx.array, cache: Optional[List[Union[Tuple[mx.array, mx.array], None]]] = None, ) -> Tuple[mx.array, Optional[List[Union[Tuple[mx.array, mx.array], None]]]]: h = self.embed_tokens(inputs) mask = None if h.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) mask = mask.astype(self.embed_tokens.weight.dtype) if cache is None: past_key_values_length = 0 cache = [None for _ in range(len(self.layers.layers))] else: if cache[0] is not None: past_key_values_length = cache[0][0].shape[2] position_ids = _create_position_ids(h.shape[1], past_key_values_length) for e, layer in enumerate(self.layers.layers): h, c = layer(h, mask, position_ids, cache[e]) if cache is not None: cache[e] = c else: cache.append(c) return self.norm(h), cache def _create_position_ids(seq_length: int, past_key_values_length: int = 0) -> mx.array: # create position_ids on the fly for batch generation position_ids = mx.arange( past_key_values_length, seq_length + past_key_values_length, dtype=mx.int64 ) position_ids = position_ids[None, ...].reshape(-1, seq_length) return position_ids class Model(nn.Module): def __init__(self, config: PretrainedConfig) -> None: super().__init__() self.model = PlamoModel(config) self.lm_head: nn.Module = nn.Linear( config.hidden_size, config.vocab_size, bias=False ) def __call__( self, inputs: mx.array, cache: Optional[List[Tuple[mx.array, mx.array]]] = None, ) -> Tuple[mx.array, mx.array]: out, cache = self.model(inputs, cache) return self.lm_head(out), cache