from dataclasses import dataclass from typing import Any, Dict, Optional import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention from .switch_layers import SwitchGLU @dataclass class ModelArgs(BaseModelArgs): model_type: str = "deepseek" vocab_size: int = 102400 hidden_size: int = 4096 intermediate_size: int = 11008 moe_intermediate_size: int = 1407 num_hidden_layers: int = 30 num_attention_heads: int = 32 num_key_value_heads: int = 32 n_shared_experts: Optional[int] = None n_routed_experts: Optional[int] = None num_experts_per_tok: Optional[int] = None moe_layer_freq: int = 1 first_k_dense_replace: int = 0 max_position_embeddings: int = 2048 rms_norm_eps: float = 1e-6 rope_theta: float = 10000.0 rope_scaling: Optional[Dict] = None attention_bias: bool = False class DeepseekAttention(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.num_kv_heads = config.num_key_value_heads self.head_dim = config.hidden_size // config.num_attention_heads self.scale = self.head_dim**-0.5 attention_bias = getattr(config, "attention_bias", False) self.q_proj = nn.Linear( self.hidden_size, config.num_attention_heads * self.head_dim, bias=attention_bias, ) self.k_proj = nn.Linear( self.hidden_size, config.num_key_value_heads * self.head_dim, bias=attention_bias, ) self.v_proj = nn.Linear( self.hidden_size, config.num_key_value_heads * self.head_dim, bias=attention_bias, ) self.o_proj = nn.Linear( self.hidden_size, config.num_attention_heads * self.head_dim, bias=attention_bias, ) rope_scale = 1.0 if config.rope_scaling and config.rope_scaling["type"] == "linear": assert isinstance(config.rope_scaling["factor"], float) rope_scale = 1 / config.rope_scaling["factor"] self.rope = nn.RoPE( self.head_dim, base=config.rope_theta, scale=rope_scale, ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: B, L, _ = x.shape queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose( 0, 2, 1, 3 ) keys = keys.reshape(B, L, self.num_kv_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, self.num_kv_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rope(queries, offset=cache.offset) keys = self.rope(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rope(queries) keys = self.rope(keys) output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.o_proj(output) class DeepseekMLP(nn.Module): def __init__( self, config: ModelArgs, hidden_size: Optional[int] = None, intermediate_size: Optional[int] = None, ): super().__init__() self.config = config self.hidden_size = hidden_size or config.hidden_size self.intermediate_size = intermediate_size or config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = nn.silu def __call__(self, x: mx.array) -> mx.array: return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class MoEGate(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.n_routed_experts = config.n_routed_experts self.weight = mx.zeros((self.n_routed_experts, config.hidden_size)) def __call__(self, x): gates = x @ self.weight.T scores = mx.softmax(gates, axis=-1, precise=True) k = self.top_k inds = mx.stop_gradient(mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k]) scores = mx.take_along_axis(scores, inds, axis=-1) return inds, scores class DeepseekMoE(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.switch_mlp = SwitchGLU( config.hidden_size, config.moe_intermediate_size, config.n_routed_experts ) self.gate = MoEGate(config) if config.n_shared_experts is not None: intermediate_size = config.moe_intermediate_size * config.n_shared_experts self.shared_experts = DeepseekMLP( config=config, intermediate_size=intermediate_size ) def __call__(self, x): inds, scores = self.gate(x) y = self.switch_mlp(x, inds) y = (y * scores[..., None]).sum(axis=-2) if self.config.n_shared_experts is not None: y = y + self.shared_experts(x) return y class DeepseekDecoderLayer(nn.Module): def __init__(self, config: ModelArgs, layer_idx: int): super().__init__() self.self_attn = DeepseekAttention(config) self.mlp = ( DeepseekMoE(config) if ( config.n_routed_experts is not None and layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0 ) else DeepseekMLP(config) ) self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = nn.RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def __call__( self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, ) -> mx.array: r = self.self_attn(self.input_layernorm(x), mask, cache) h = x + r r = self.mlp(self.post_attention_layernorm(h)) out = h + r return out class DeepseekModel(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = [ DeepseekDecoderLayer(config, idx) for idx in range(config.num_hidden_layers) ] self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def __call__( self, x: mx.array, cache: Optional[Any] = None, ) -> mx.array: h = self.embed_tokens(x) mask = create_attention_mask(h, cache) if cache is None: cache = [None] * len(self.layers) for layer, c in zip(self.layers, cache): h = layer(h, mask, c) return self.norm(h) class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.args = config self.model_type = config.model_type self.model = DeepseekModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) def __call__( self, inputs: mx.array, cache: Optional[Any] = None, ): out = self.model(inputs, cache) return self.lm_head(out) def sanitize(self, weights): for l in range(self.args.num_hidden_layers): prefix = f"model.layers.{l}" for m in ["gate_proj", "down_proj", "up_proj"]: for k in ["weight", "scales", "biases"]: if f"{prefix}.mlp.experts.0.{m}.{k}" in weights: to_join = [ weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}") for e in range(self.args.n_routed_experts) ] weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join) return weights @property def layers(self): return self.model.layers