# Copyright © 2023-2024 Apple Inc. from dataclasses import dataclass import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention @dataclass class ModelArgs(BaseModelArgs): model_type: str hidden_size: int = 2048 num_attention_heads: int = 16 num_hidden_layers: int = 24 kv_channels: int = 128 max_position_embeddings: int = 8192 layer_norm_epsilon: float = 1e-6 intermediate_size: int = 11008 no_bias: bool = True vocab_size: int = 151936 num_key_value_heads = None def __post_init__(self): if self.num_key_value_heads is None: self.num_key_value_heads = self.num_attention_heads class Attention(nn.Module): def __init__(self, args: ModelArgs): super().__init__() hidden_size = args.hidden_size self.num_attention_heads = args.num_attention_heads hidden_size_per_attention_head = hidden_size // self.num_attention_heads self.rotary_emb = nn.RoPE(hidden_size_per_attention_head, traditional=False) proj_size = args.kv_channels * self.num_attention_heads self.c_attn = nn.Linear(hidden_size, proj_size * 3, bias=True) self.c_proj = nn.Linear(hidden_size, proj_size, bias=not args.no_bias) self.scale = hidden_size_per_attention_head**-0.5 def __call__(self, x, mask=None, cache=None): qkv = self.c_attn(x) q, k, v = mx.split(qkv, 3, axis=-1) B, L, _ = q.shape queries = q.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3) keys = k.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3) values = v.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3) if cache is not None: queries = self.rotary_emb(queries, offset=cache.offset) keys = self.rotary_emb(keys, offset=cache.offset) keys, values = cache.update_and_fetch(keys, values) else: queries = self.rotary_emb(queries) keys = self.rotary_emb(keys) output = scaled_dot_product_attention( queries, keys, values, cache=cache, scale=self.scale, mask=mask ) output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) return self.c_proj(output) class MLP(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.w1 = nn.Linear( args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias ) self.w2 = nn.Linear( args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias ) self.c_proj = nn.Linear( args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias ) def __call__(self, x): a1 = self.w1(x) a2 = self.w2(x) return self.c_proj(a1 * nn.silu(a2)) class TransformerBlock(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.ln_1 = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) self.attn = Attention(args) self.ln_2 = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) self.mlp = MLP(args) def __call__(self, x, mask=None, cache=None): residual = x x = self.ln_1(x) x = self.attn(x, mask=mask, cache=cache) residual = x + residual x = self.ln_2(residual) x = self.mlp(x) x = x + residual return x class QwenModel(nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.wte = nn.Embedding(args.vocab_size, args.hidden_size) self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)] self.ln_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon) def __call__(self, inputs, mask=None, cache=None): x = self.wte(inputs) mask = create_attention_mask(x, cache) if cache is None: cache = [None] * len(self.h) for layer, c in zip(self.h, cache): x = layer(x, mask, c) return self.ln_f(x) class Model(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.model_type = config.model_type self.transformer = QwenModel(config) self.lm_head = nn.Linear( config.hidden_size, config.vocab_size, bias=not config.no_bias ) self.args = config def __call__( self, x: mx.array, mask: mx.array = None, cache=None, ) -> mx.array: y = self.transformer(x, mask, cache) return self.lm_head(y) @property def layers(self): return self.transformer.h