from typing import Optional from dataclasses import dataclass from mlx.utils import tree_unflatten, tree_map from transformers import AutoTokenizer import mlx.core as mx import mlx.nn as nn import math @dataclass class ModelArgs: max_sequence_length: int = 2048 num_vocab: int = 51200 model_dim: int = 2560 num_heads: int = 32 num_layers: int = 32 rotary_dim: int = 32 class RoPEAttention(nn.Module): def __init__(self, dims: int, num_heads: int, bias: bool = True): super().__init__() self.num_heads = num_heads self.rope = nn.RoPE(dims // num_heads, traditional=True) self.query_proj = nn.Linear(dims, dims, bias=bias) self.key_proj = nn.Linear(dims, dims, bias=bias) self.value_proj = nn.Linear(dims, dims, bias=bias) self.out_proj = nn.Linear(dims, dims, bias=bias) def __call__(self, queries, keys, values, mask=None, cache=None): queries = self.query_proj(queries) keys = self.key_proj(keys) values = self.value_proj(values) # Extract some shapes num_heads = self.num_heads B, L, D = queries.shape # Prepare the queries, keys and values for the attention computation queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3) # Add RoPE to the queries and keys and combine them with the cache if cache is not None: key_cache, value_cache = cache queries = self.rope(queries, offset=key_cache.shape[2]) keys = self.rope(keys, offset=key_cache.shape[2]) keys = mx.concatenate([key_cache, keys], axis=2) values = mx.concatenate([value_cache, values], axis=2) else: queries = self.rope(queries) keys = self.rope(keys) # Finally perform the attention computation scale = math.sqrt(1 / queries.shape[-1]) scores = (queries * scale) @ keys.transpose(0, 1, 3, 2) if mask is not None: scores = scores + mask scores = mx.softmax(scores, axis=-1) values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1) # Note that we return the keys and values to possibly be used as a cache return self.out_proj(values_hat), (keys, values) class ParallelBlock(nn.Module): def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None): super().__init__() mlp_dims = mlp_dims or dims * 4 self.self_attention = RoPEAttention(dims, num_heads, bias=True) self.ln = nn.LayerNorm(dims) self.fc1 = nn.Linear(dims, mlp_dims) self.fc2 = nn.Linear(mlp_dims, dims) self.act = nn.GELU(approx="precise") def __call__(self, x, mask, cache): h = self.ln(x) attn_h, cache = self.self_attention(h, h, h, mask, cache) ff_h = self.fc2(self.act(self.fc1(h))) return attn_h + ff_h + x, cache class TransformerDecoder(nn.Module): def __init__( self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None ): super().__init__() self.h = [ParallelBlock(dims, num_heads, mlp_dims) for i in range(num_layers)] def __call__(self, x, mask, cache): if cache is None: cache = [None] * len(self.h) for e, layer in enumerate(self.h): x, cache[e] = layer(x, mask, cache[e]) return x, cache class OutputHead(nn.Module): def __init__(self, config: ModelArgs) -> None: self.ln = nn.LayerNorm(config.model_dim) self.linear = nn.Linear(config.model_dim, config.num_vocab) def __call__(self, inputs): return self.linear(self.ln(inputs)) class Phi2(nn.Module): def __init__(self, config: ModelArgs): self.wte = nn.Embedding(config.num_vocab, config.model_dim) self.transformer = TransformerDecoder( num_layers=config.num_layers, dims=config.model_dim, num_heads=config.num_heads, ) self.lm_head = OutputHead(config) def __call__( self, inputs: mx.array, mask: mx.array = None, cache: mx.array = None, ) -> tuple[mx.array, mx.array]: x = self.wte(inputs) mask = None if x.shape[1] > 1: mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1]) mask = mask.astype(x.dtype) y, cache = self.transformer(x, mask, cache) return self.lm_head(y), cache def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0): def sample(logits): if temp == 0: return mx.argmax(logits, axis=-1) else: return mx.random.categorical(logits * (1 / temp)) logits, cache = model(prompt) y = sample(logits[:, -1, :]) yield y while True: logits, cache = model(y[:, None], cache=cache) y = sample(logits.squeeze(1)) yield y if __name__ == "__main__": model = Phi2(ModelArgs()) weights = mx.load("weights/phi-2.npz") weights = tree_unflatten(list(weights.items())) weights = tree_map(lambda p: mx.array(p, mx.float32), weights) model.update(weights) tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) prompt = tokenizer("Write a detailed analogy between mathematics and a lighthouse.", return_tensors="np", return_attention_mask=False, )["input_ids"] prompt = mx.array(prompt) tokens_per_eval = 1 max_tokens = 100 tokens = [] for token, _ in zip(generate(prompt, model), range(max_tokens)): tokens.append(token) if (len(tokens) % tokens_per_eval) == 0: mx.eval(tokens) s = tokenizer.decode([t.item() for t in tokens]) print(s, end="", flush=True) tokens = []